Advertisement

Numerical Case Studies: Forward Problems

  • Paolo Di BarbaEmail author
  • Maria Evelina Mognaschi
Chapter
  • 322 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 573)

Abstract

Electrostatic micromotors were the first MEMS which had been designed and prototyped exploiting Silicon integrated technology.

References

  1. 1.
    Bart SF, Mehregany M, Tavrow LS, Lang JH, Senturia SD (1992) Electric micromotor dynamics. IEEE Trans Electron Devices 39(3)CrossRefGoogle Scholar
  2. 2.
    Chereches R, Di Barba P, Topa V, Purcar M, Wiak S (2013) Optimal shape design of electrostatic microactuators: a multiobjective formulation. Int J Appl Electromagn Mech IJAEM 43(1–2):65–76CrossRefGoogle Scholar
  3. 3.
    Chereches RL, Di Barba P, Wiak S (2015) Non-linear inverse problems and optimal design of MEMS. COMPEL—Int J Comput Math Electr Electron Eng 34(3):608–623CrossRefGoogle Scholar
  4. 4.
    Delinchant B, Rakotoarison HL, Ardon V, Chabedec O, Cugat O (2009) Gradient based optimization of semi-numerical models with symbolic sensitivity: application to simple ferromagnetic MEMS switch device. Int J Appl Electromagn Mech IJAEM 30:189–200CrossRefGoogle Scholar
  5. 5.
    Di Barba P, Liu B, Mognaschi ME, Venini P, Wiak S (2017) Multiphysics field analysis and evolutionary optimization: design of an electro-thermoelastic microactuator. Int J Appl Electromagn Mech 54(3):433–448CrossRefGoogle Scholar
  6. 6.
    Di Barba P, Dughiero F, Mognaschi ME, Savini A, Wiak S (2016) Biogeography-inspired multiobjective optimization and MEMS design. IEEE Trans Magn 52(3)Google Scholar
  7. 7.
    Di Barba P, Gotszalk T, Majstrzyk W, Mognaschi ME, Orłowska K, Wiak S, Sierakowski A (2018) Optimal design of electromagnetically actuated MEMS cantilevers. Sensors (Switzerland) 18(8)Google Scholar
  8. 8.
    Di Barba P, Mognaschi ME, Savini A, Wiak S (2016) Island biogeography as a paradigm for MEMS optimal design. Int J Appl Electromagn Mech IJAEM 51(s1):97–105CrossRefGoogle Scholar
  9. 9.
    Di Barba P, Mognaschi ME, Venini P, Wiak S (2017) Biogeography-inspired multiobjective optimization for helping MEMS synthesis. Arch Electr Eng 66(3):607–623CrossRefGoogle Scholar
  10. 10.
    Di Barba P, Savini A, Wiak S (1994) 2-D numerical simulation of electrostatic micromotor torque. In: Proceedings of the second international conference on computation in electromagnetics, Nottingham, pp 227–230Google Scholar
  11. 11.
    Di Barba P, Savini A, Wiak S (2008) Field models in electricity and magnetism. Springer, BerlinCrossRefGoogle Scholar
  12. 12.
    Di Barba P, Savini A, Wiak S (2017) Higher-order multiobjective design of MEMS. Int J Appl Electromagn Mech 53(S2):S239–S247CrossRefGoogle Scholar
  13. 13.
    Di Barba P, Wiak S (2015) Evolutionary computing and optimal design of MEMS. IEEE/ASME Trans Mechatron 20(4):1660–1667CrossRefGoogle Scholar
  14. 14.
    Fan LS, Tai YC, Muller R (1989) IC processed electrostatic microactuator’s. Sens Actuators 20:41–47CrossRefGoogle Scholar
  15. 15.
    Fan LS, Tai YC, Muller R (1989) IC processed electrostatic synchronous microactuators. Sens Actuators 20:49–55CrossRefGoogle Scholar
  16. 16.
    Guckel H (1998) Progress in magnetic microactuators. Microsyst Technol 5(2):59–61CrossRefGoogle Scholar
  17. 17.
    Guckel H, Earles T, Klein J, Zook JD, Ohnstein T (1996) Electromagnetic linear actuators with inductive position sensing. Sens Actuators A 53:386–391CrossRefGoogle Scholar
  18. 18.
    Huang QA, Lee NKS (1999) Analytical modeling and optimization for a laterally-driven polysilicon thermal actuator. Microsyst Technol 5:133–137CrossRefGoogle Scholar
  19. 19.
    Hussein H, Tahhan A, Le Moal P, Bourbon, G, Haddab Y, Lutz P (2016) Dynamic electro-thermo-mechanical modelling of a U-shaped electro-thermal actuator. J Micromech Microeng 26(2)CrossRefGoogle Scholar
  20. 20.
    Kolesar ES, Allen PB, Howard JT, Wilken JM, Boydston N (1999) Thermally actuated cantilever beam for achieving large in-plane mechanical deflections. Thin Solid Films 355:295–302CrossRefGoogle Scholar
  21. 21.
    Legtenberg R, Groeneveld AW, Elwenspoek M (1996) Comb-drive actuators for large displacements. J Micromech Microeng 6:320–329CrossRefGoogle Scholar
  22. 22.
    Majstrzyk W, Mognaschi ME, Orłowska K, Di Barba P, Sierakowski A, Dobrowolski R, Grabiec P, Gotszalk T (2018) Electromagnetic cantilever reference for the calibration of optical nanodisplacement systems. Sens Actuators A 282:149–156CrossRefGoogle Scholar
  23. 23.
    Mehregany M, Senturia SD, Lang JH, Nagarkar P (1992) Micromotor fabrication. IEEE Trans Electron Devices 39:2060–2069CrossRefGoogle Scholar
  24. 24.
    Paratte L, Racine GA, De Rooij NF, Bornand E (1991) Design of an integrated electrostatic stepper motor with axial field. Sens Actuators A 25–27:597–603CrossRefGoogle Scholar
  25. 25.
    Senturia SD, Harris RM, Johnson BP, Nabors SK, Shulman MA, White JK (1992) A computer-aided design system for microelectromechanical systems (MEMCAD). J Microelectromech Syst 1:3–13CrossRefGoogle Scholar
  26. 26.
    Tang WC, Lim MG, Howe RT (1992) Electrostatic comb drive levitation and control method. J Microelectromech Syst 1:170–178CrossRefGoogle Scholar
  27. 27.
    Wiak S, Smołka K (2009) Numerical modelling of 3-D comb drive electrostatic accelerometers structure (method of levitation force reduction). COMPEL 28:593–602CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Electrical, Computer and Biomedical EngineeringUniversity of PaviaPaviaItaly

Personalised recommendations