Skip to main content

Revolutionary Reproduction Biotechnologies in Livestock: An Overview

  • Chapter
  • First Online:
Advances in Animal Biotechnology

Abstract

Developing, conserving, and disseminating best livestock is the prime concern of reproduction biotechnology. Breakthroughs in assisted reproduction technologies (ARTs) ranging from artificial insemination to advanced transgenesis and genome editing are successfully applied to enhance production and value addition of livestock products. While the emphasis is on proliferating high-yielding breeds, these animals are susceptible to biotic and abiotic stress. Therefore, native livestock resources need due scientific attention to conserve them and utilize their genetic merit.

  • Highlights

  • The ARTs have played a crucial role in enhancing livestock production from a domestic practice to a commercial enterprise

  • High-yielding animal breeds have certain limitations that make them unfit in low-input management

  • Stress-tolerance genes of native livestock are the potential sources to improve high-yielding animals to cope with imminent climatic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almquist JO, Wiggin HB (1973) Survival of bull spermatozoa frozen and thawed by different methods in plastic straws. AI Digest 21:12

    Google Scholar 

  • Almquist JO, Glantz PJ, Shaffers HE (1949) The effect of a combination of penicillin and streptomycin upon the livability and bacterial content of bovine semen. J Dairy Sci 32:183–190

    Article  Google Scholar 

  • Alves BC, Hossepian de Lima VF, Moreira-Filho CA (2010) Development of Y-chromosome-specific SCAR markers conserved in taurine, zebu and bubaline cattle. Reprod Domest Anim 45(6):1047–1051. https://doi.org/10.1111/j.1439-0531.2009.01491.x

    Article  Google Scholar 

  • Bauman DE, Mather IH, Wall RJ, Lock AL (2006) Major advances associated with the biosynthesis of milk. J Dairy Sci 89(4):1235–1243. Review

    Article  CAS  PubMed  Google Scholar 

  • Bondioli KR, Ellis SB, Pryor JH, Williams MW, Harpold MM (1989) The use of male-specific chromosomal DNA fragments to determine the sex of bovine preimplantation embryos. Theriogenology 31:95–104. https://doi.org/10.1016/0093-691X(89)90567-0

    Article  Google Scholar 

  • Brackett BG, Bousquet D, Boice ML, Donawick WJ, Evans JF, Dressel MA (1982) Normal development following in vitro fertilization in the cow. Biol Reprod 27(1):147–158

    Article  CAS  PubMed  Google Scholar 

  • Chang MC (1959) Fertilization of rabbit ova in vitro. Nature 184(Suppl 7):466–7. No abstract available

    Article  PubMed  Google Scholar 

  • Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Ponce de León FA, Robl JM (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280(5367):1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Cibelli JB, Grant KA, Chapman KB, Cunniff K, Worst T, Green HL, Walker SJ, Gutin PH, Vilner L, Tabar V, Dominko T, Kane J, Wettstein PJ, Lanza RP, Studer L, Vrana KE, West MD (2002) Parthenogenetic stem cells in nonhuman primates. Science. 295(5556):819. No abstract available

    Article  CAS  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini L, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 3:1231143

    Google Scholar 

  • Cran DG, Johnson LA, Miller NG, Cochrane D, Polge C (1993) Production of bovine calves following separation of X- and Y-chromosome bearing sperm and in vitro fertilisation. Vet Rec 132(2):40–41

    Article  CAS  PubMed  Google Scholar 

  • de Souza GB, Costa J, da Cunha EV, Passos J, Ribeiro RP, Saraiva M, van den Hurk R, Silva J (2017) Bovine ovarian stem cells differentiate into germ cells and oocyte-like structures after culture in vitro. Reprod Domest Anim 52(2):243–250. https://doi.org/10.1111/rda.12886 (Epub 2016 Dec 7)

    Article  CAS  PubMed  Google Scholar 

  • Deng S, Wang X, Wang Z, Chen S, Wang Y, Hao X, Sun T, Zhang Y, Lian Z, Liu Y (2017) In vitro production of functional haploid sperm cells from male germ cells of Saanen dairy goat. Theriogenology 1(90):120–128. https://doi.org/10.1016/j.theriogenology.2016.12.002 (Epub 2016 Dec 2)

    Article  CAS  Google Scholar 

  • Do VH, Catt S, Kinder JE, Walton S, Taylor-Robinson AW (2019) Vitrification of invitro-derived bovine embryos: targeting enhancement of quality by refining technology and standardising procedures. Reprod Fertil Dev https://doi.org/10.1071/rd18352 (Epub ahead of print)

    Article  CAS  Google Scholar 

  • Drost M, Brand A, Aarts MH (1976) A device for nonsurgical recovery of bovine embryos. Theriogenology 6:503–507

    Article  Google Scholar 

  • Dziuk PJ, Danker JD, Nichols JR, Petersen WE (1958) Problems associated with transfer of ova between cattle. Univ Minnesota Tech Bull 222:1–75

    Google Scholar 

  • Elsden RP, Hasler JF, Seidel GE Jr (1976) Non-surgical recovery of bovine eggs. Theriogenology 6:523–532

    Article  CAS  PubMed  Google Scholar 

  • Elsden RP, Nelson LD, Seidel GE Jr (1978) Superovulating cows with follicle stimulating hormone and pregnant mare’s serum gonadotrophin. Theriogenology 9:17–26

    Article  CAS  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  PubMed  Google Scholar 

  • Festing M (1972) Mouse strain identifi-cation. Nature 238:351–352

    Article  CAS  PubMed  Google Scholar 

  • Forgason JL, Berry WT Jr, Goodwin DE (1961) Freezing bull semen in liquid nitrogen vapor without instrumentation. J Anim Sci 20:970

    Google Scholar 

  • Garner DL (2006) Flow cytometric sexing of mammalian sperm. Theriogenology. 65(5):943–57 (Epub 2005 Oct 20). Review

    Article  PubMed  Google Scholar 

  • Garner DL, Gledhill BL, Pinkel D, Lake S, Stephenson D, Van Dilla MA, Johnson LA (1983) Quantification of the X- and Y-chromosome-bearing spermatozoa of domestic animals by flow cytometry. Biol Reprod 28(2):312–321

    Article  CAS  PubMed  Google Scholar 

  • Garner DL, Evans KM, Seidel GE (2013) Sex-sorting sperm using flow cytometry/cell sorting. Methods Mol Biol. 927:279–95. Review

    Google Scholar 

  • Gray KR, Bondioli KR, Betts CL (1991) The commercial application of embryo splitting in beef cattle. Theriogenology 35:37–44

    Article  Google Scholar 

  • Hare WCD, Mitchell D, Betteridge KJ, Eaglesome MD, Randall GCB (1976) Sexing two-week old bovine embryos by chromosomal analysis prior to surgical transfer: preliminary methods and results. Theriogenology 5:243–253

    Article  Google Scholar 

  • Hasler JF (2014) Forty years of embryo transfer in cattle: a review focusing on the journal Theriogenology, the growth of the industry in North America, and personal reminisces. Theriogenology 81(1):152–169. https://doi.org/10.1016/j.theriogenology.2013.09.010

    Article  PubMed  Google Scholar 

  • Hendriks S, Dancet EA, van Pelt AM, Hamer G, Repping S (2015) Artificial gametes: a systematic review of biological progress towards clinical application. Hum Reprod Update 21(3):285–296. https://doi.org/10.1093/humupd/dmv001

    Article  PubMed  Google Scholar 

  • Herr CM, Reed KC (1991) Micronanipulation of bovine embryos for sex determination. Theriogenology 35:45–54

    Article  Google Scholar 

  • Hoffmann I (2010) Climate change and the characterization, breeding and conservation of animal genetic resources. Anim Genet 41(Suppl 1):32–46. https://doi.org/10.1111/j.1365-2052.2010.02043.x

    Article  PubMed  Google Scholar 

  • Hoshino Y, Hayashi N, Taniguchi S, Kobayashi N, Sakai K, Otani T, Iritani A, Saeki K (2009) Resurrection of a bull by cloning from organs frozen without cryoprotectant in a −80 °C freezer for a decade. PLoS One 4(1):e4142. https://doi.org/10.1371/journal.pone.0004142 (Epub 2009 Jan 8)

    Article  PubMed  PubMed Central  Google Scholar 

  • Iritani A, Niwa K (1977) Capacitation of bull spermatozoa and fertilization in vitro of cattle follicular oocytes matured in culture. J Reprod Fertil 50(1):119–121

    Article  CAS  PubMed  Google Scholar 

  • Jaenisch R, Mintz B (1974) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci U S A 71(4):1250–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson LA, Flook JP, Hawk HW (1989) Sex preselection in rabbits: live births from X and Y sperm separated by DNA and cell sorting. Biol Reprod 41(2):199–203

    Article  CAS  PubMed  Google Scholar 

  • Kasinathan P, Wei H, Xiang T, Molina JA, Metzger J, Broek D, Kasinathan S, Faber DC, Allan MF (2015) Acceleration of genetic gain in cattle by reduction of generation interval. Sci Rep 2(5):8674. https://doi.org/10.1038/srep08674

    Article  CAS  Google Scholar 

  • Lanza RP, Cibelli JB, Diaz F, Moraes CT, Farin PW, Farin CE, Hammer CJ, West MD, Damiani P (2000) Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning 2(2):79–90

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wang Y, Tian Y, Yu Y, Gao M, Hu G, Su F, Pan S, Luo Y, Guo Z, Quan F, Zhang Y (2014) Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases. Proc Biol Sci 281(1780):20133368. https://doi.org/10.1098/rspb.2013.3368. Print 2014 Apr 7

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Cai Y, Liao Z, Xu Y, Wang Y, Wang Z, Jiang X, Li Y, Lu Y, Nie Y, Zhang X, Li C, Bian X, Poo M, Chang H, Sun Q (2018) Cloning of a gene-edited macaque monkey by somatic cell nuclear transfer. Natl Sci Rev (In oress). https://doi.org/10.1093/nsr/nwz003

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM, Chuck J, Tan D, Knott GJ, Harrington LB, Al-Shayeb B, Wagner A, Brötzmann J, Staahl BT, Taylor KL, Desmarais J, Nogales E, Doudna JA (2019) CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature. https://doi.org/10.1038/s41586-019-0908-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Looney CR, Lindsey BR, Gonseth CL, Johnson DL (1994) Commercial aspects of oocyte retrieval and in vitro fertilization (IVF) for embryo production in problem cows. Theriogenology 41:67–72

    Article  Google Scholar 

  • Lu KH, Gordon I, Chen HB, McGovern H (1987) In vitro culture of early bovine embryos derived from in vitro fertilization of follicular oocytes matured in vitro. In: Proceeding of Third Meeting of the European Embryo Transfer Association Lyon, France. Association of Embryo. Technology in Europe, Paris, France, pp 70

    Google Scholar 

  • Magata F, Tsuchiya K, Okubo H, Ideta A (2019) Application of intracytoplasmic sperm injection to the embryo production in aged cows. J Vet Med Sci 81(1):84–90. https://doi.org/10.1292/jvms.18-0284 (Epub 2018 Nov 26)

    Article  CAS  PubMed  Google Scholar 

  • Makoolati Z, Movahedin M, Forouzandeh-Moghadam M, Naghdi M, Koruji M (2017) Embryonic stem cell derived germ cells induce spermatogenesis after transplantation into the testes of an adult mouse azoospermia model. Clin Sci (Lond) 131(18):2381–2395. https://doi.org/10.1042/cs20171074. Print 2017 Sep 15

    Article  CAS  PubMed  Google Scholar 

  • Martin GR (1981) Isolation of pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore SG, Hasler JF (2017) A 100-year review: reproductive technologies in dairy science. J Dairy Sci 100(12):10314–10331. https://doi.org/10.3168/jds.2017-13138.Review

    Article  CAS  PubMed  Google Scholar 

  • Morohaku K, Tanimoto R, Sasaki K, Kawahara-Miki R, Kono T, Hayashi K, Hirao Y, Obata Y (2016) Complete in vitro generation of fertile oocytes from mouse primordial germ cells. Proc Natl Acad Sci USA 113(32):9021–9026. https://doi.org/10.1073/pnas.1603817113 (Epub 2016 Jul 25)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse MC, Kappen KA, Kruip TA, Taverne MA (1988) Aspiration of bovine oocytes during transvaginal ultrasound scanning of the ovaries. Theriogenology 30(4):751–762

    Article  CAS  PubMed  Google Scholar 

  • Polge C (1952) Fertilizing capacity of bull spermatozoa after freezing at 79 °C. Nature 169(4302):626–627

    Article  CAS  PubMed  Google Scholar 

  • Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164(4172):666

    Article  CAS  PubMed  Google Scholar 

  • Prather RS, Barnes FL, Sims MM, Robl JM, Eyestone WH, First NL (1987) Nuclear transplantation in the bovine embryo: assessment of donor nuclei and recipient oocyte. Biol Reprod 37(4):859–866

    Article  CAS  PubMed  Google Scholar 

  • Robl JM, Wang Z, Kasinathan P, Kuroiwa Y (2007) Transgenic animal production and animal biotechnology. Theriogenology 67(1):127–133 (Epub 2006 Oct 27)

    Article  CAS  PubMed  Google Scholar 

  • Roels K, Smits K, Ververs C, Govaere J, D’Herde K, Van Soom A (2018) Blastocyst production after intracytoplasmic sperm injection with semen from a stallion with testicular degeneration. Reprod Domest Anim 53(3):814–817. https://doi.org/10.1111/rda.13153 (Epub 2018 Mar 1)

    Article  CAS  PubMed  Google Scholar 

  • Rowe RF, Del Campo MR, Eilts CL, French LR, Winch RP, Ginther OJ (1976) A single cannula technique for nonsurgical collection of ova from cattle. Theriogenology 6(5):471–483

    Article  CAS  PubMed  Google Scholar 

  • Rowson LE (1951) Methods of inducing multiple ovulation in cattle. J Endocrinol 7(3):260–270

    Article  CAS  PubMed  Google Scholar 

  • Rowson LE, Dowling DF (1949) An apparatus for the extraction of fertilized eggs from the living cow. Vet Rec 61:191

    Google Scholar 

  • Schulze M, Bortfeldt R, Schäfer J, Jung M, Fuchs-Kittowski F (2018) Effect of vibration emissions during shipping of artificial insemination doses on boar semen quality. Anim Reprod Sci 192:328–334. https://doi.org/10.1016/j.anireprosci.2018.03.035

    Article  CAS  PubMed  Google Scholar 

  • Seidel GE Jr (2009) Sperm sexing technology-the transition to commercial application. An introduction to the symposium “update on sexing mammalian sperm”. Theriogenology 71(1):1–3. https://doi.org/10.1016/j.theriogenology.2008.09.015 (Epub 2008 Oct 23)

    Article  PubMed  Google Scholar 

  • Selokar NL, Saini M, Palta P, Chauhan MS, Manik R, Singla SK (2014) Hope for restoration of dead valuable bulls through cloning using donor somatic cells isolated from cryopreserved semen. PLoS One 9(3):e90755. https://doi.org/10.1371/journal.pone.0090755. eCollection 2014

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh B, Chauhan MS, Singla SK, Gautam SK, Verma V, Manik RS, Singh AK, Sodhi M, Mukesh M (2009) Reproductive biotechniques in buffaloes (Bubalus bubalis): status, prospects and challenges. Reprod Fertil Dev 21(4):499–510. https://doi.org/10.1071/rd08172. Review

    Article  CAS  Google Scholar 

  • Singh B, Mal G, Singla SK (2017a) Chapter 18 vitrification: a reliable method for cryopreservation of animal embryos. Methods Mol Biol 1568:243–249. https://doi.org/10.1007/978-1-4939-6828-2_18

    Google Scholar 

  • Singh R, Mishra SK, Rajesh C, Dash SK, Niranjan SK, Kataria RS (2017b) Chilika- a distinct registered buffalo breed of India. Int J Livest Res 7(9):259–266. https://doi.org/10.5455/ijlr.20170704044822

    Article  Google Scholar 

  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow: environmental issues and options. FAO, Rome, Italy

    Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676 (Epub 2006 Aug 10)

    Article  CAS  PubMed  Google Scholar 

  • Tanne JH (2008) FDA approves use of cloned animals for food. BMJ 336(7637):176. https://doi.org/10.1136/bmj.39468.528368.DB No abstract available

    Article  PubMed  PubMed Central  Google Scholar 

  • Thornton PK (2010) Livestock production: recent trends, future prospects. Philos. Trans R Soc Lond B Biol Sci 365:2853–2867

    Article  Google Scholar 

  • Umbaugh RE (1949) Superovulation and ovum transfer in cattle. Am J Vet Res 10:295–305

    Google Scholar 

  • Valenzuela OA, Couturier-Tarrade A, Choi YH, Aubrière MC, Ritthaler J, Chavatte-Palmer P, Hinrichs K (2018) Impact of equine assisted reproductive technologies (standard embryo transfer or intracytoplasmicsperm injection (ICSI) with in vitro culture and embryo transfer) on placenta and foal morphometry and placental gene expression. Reprod Fertil Dev 30(2):371–379. https://doi.org/10.1071/RD16536

    Article  PubMed  Google Scholar 

  • Whittingham DG, Leibo SP, Mazur P (1972a) Survival of mouse embryos from −196 to −269 °C. Science 178:411–412

    Article  CAS  PubMed  Google Scholar 

  • Whittingham DG, Leibo SP, Mazur P (1972b) Survival of mouse embryos frozen to −196 and −269 °C. Science 178(4059):411–414

    Article  CAS  PubMed  Google Scholar 

  • Willadsen SM (1979) A method for culture of micromanipulated sheep embryos and its use to produce monozygotic twins. Nature 277(5694):298–300. No abstract available

    Article  CAS  PubMed  Google Scholar 

  • Willadsen SM (1986) Nuclear transplantation in sheep embryos. Nature 320(6057):63–65

    Article  CAS  PubMed  Google Scholar 

  • Willadsen SM, Lehn-Jensen H, Fehilly CB, Newcomb R (1981) The production of monozygotic twins of preselected parentage by micromanipulation of non-surgically collected cow embryos. Theriogenology. 15(1):23–29. No abstract available

    Article  CAS  PubMed  Google Scholar 

  • Willett EL, Black WG, Casida LE, Stone WH, Buckner PJ (1951) Successful transplantation of a fertilized bovine ovum. Science 113(2931):247. No abstract available

    Article  CAS  PubMed  Google Scholar 

  • Wilmut I, Rowson LE (1973a) Experiments on the low-temperature preservation of cow embryos. Vet Rec 92(26):686–90. No abstract available

    Article  CAS  PubMed  Google Scholar 

  • Wilmut I, Rowson LE (1973b) The successful low-temperature preservation of mouse and cow embryos. J Reprod Fertil 33(2):352–353. No abstract available

    Article  CAS  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ (1997) Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810–3. Erratum in: Nature 1997 Mar 13;386(6621):200

    Google Scholar 

  • Windig JJ, Engelsma KA (2010) Perspectives of genomics for genetic conservation of livestock. Conserv Genet 11:635–641

    Article  Google Scholar 

  • Yadav SK, Gangwar DK, Singh J, Tikadar CK, Khanna VV, Saini S, Dholpuria S, Palta P, Manik RS, Singh MK, Singla SK (2017) An immunological approach of sperm sexing and different methods for identification of X- and Y-chromosome bearing sperm. Vet World 10(5):498–504. https://doi.org/10.14202/vetworld.2017.498-504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Wang M, Yuan Y, Wang X, Fu R, Wan H, Xie M, Liu M, Guo X, Zheng Y, Feng G, Shi Q, Zhao XY, Sha J, Zhou Q (2016) Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell 18(3):330–340. https://doi.org/10.1016/j.stem.2016.01.017

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birbal Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, B., Mal, G., Gautam, S.K., Mukesh, M. (2019). Revolutionary Reproduction Biotechnologies in Livestock: An Overview. In: Advances in Animal Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-21309-1_8

Download citation

Publish with us

Policies and ethics