Skip to main content

Translational Regulation by Upstream Open Reading Frames and Human Diseases

  • Chapter
  • First Online:
The mRNA Metabolism in Human Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1157))

Abstract

Short upstream open reading frames (uORFs) are cis-acting elements located within the 5′-leader sequence of transcripts and are defined by an initiation codon in-frame with a termination codon located upstream or downstream of its main ORF (mORF) initiation codon. Recent genome-wide ribosome profiling studies have confirmed the widespread presence of uORFs and have shown that many uORFs can initiate with non-AUG codons. uORFs can impact gene expression of the downstream mORF by triggering mRNA decay or by regulating translation. Thus, disruption or creation of uORFs can elicit the development of several genetic diseases. Here, we review the mechanisms by which AUG- and non-AUG uORFs regulate translation. We also show some examples of uORF deregulation in human genetic diseases, focusing mainly on cancer. The knowledge of how uORF deregulation drives the onset of a disease, points out the need to screen the 5′-leader sequences of the transcripts in search for potential disease-related variants. This information will be relevant for the implementation of new diagnostic and/or therapeutic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Young SK, Wek RC (2016) Upstream open reading frames differentially regulate gene-specific translation in the Integrated Stress Response. J Biol Chem 291:16927–16935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barbosa C, Peixeiro I, Romão L (2013) Gene expression regulation by upstream open reading frames and human disease. PLoS Genet 9:e1003529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Somers J, Pöyry T, Willis AE (2013) A perspective on mammalian upstream open reading frame function. Int J Biochem Cell Biol 45:1690–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leppek K, Das R, Barna M (2018) Functional 5’ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol 19:158–174

    Article  CAS  PubMed  Google Scholar 

  6. Lacerda R, Menezes J, Romão L (2017) More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cell Mol Life Sci 74:1659–1680

    Article  CAS  PubMed  Google Scholar 

  7. Andrews SJ, Rothnagel JA (2014) Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet 15:193–204

    Article  CAS  PubMed  Google Scholar 

  8. Calvo SE, Pagliarini DJ, Mootha VK (2009) Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci USA 106:7507–7512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147:789–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ye Y, Liang Y, Yu Q, Hu L, Li H, Zhang Z, Xu X (2015) Analysis of human upstream open reading frames and impact on gene expression. Hum Genet 134:605–612

    Article  CAS  PubMed  Google Scholar 

  11. Wethmar K, Smink JJ, Leutz A (2010) Upstream open reading frames: molecular switches in (patho)physiology. Bioessays 32:885–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morris DR, Geballe AP (2000) Upstream open reading frames as regulators of mRNA translation. Mol Cell Biol 20:8635–8642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Onofre C, Tomé F, Barbosa C, Silva AL, Romão L (2015) Expression of human hemojuvelin (HJV) is tightly regulated by two upstream open reading frames in HJV mRNA that respond to iron overload in hepatic cells. Mol Cell Biol 35:1376–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sajjanar B, Deb R, Raina SK, Pawar S, Brahmane MP, Nirmale AV, Kurade NP, Manjunathareddy GB, Bal SK, Singh NP (2017) Untranslated regions (UTRs) orchestrate translation reprogramming in cellular stress responses. J Therm Biol 65:69–75

    Article  CAS  PubMed  Google Scholar 

  15. Iacono M, Mignone F, Pesole G (2005) uAUG and uORFs in human and rodent 5′untranslated mRNAs. Gene 349:97–105

    Article  CAS  PubMed  Google Scholar 

  16. Wethmar K (2014) The regulatory potential of upstream open reading frames in eukaryotic gene expression. Wiley Interdiscip Rev RNA 5:765–768

    Article  CAS  PubMed  Google Scholar 

  17. Johnstone TG, Bazzini AA, Giraldez AJ (2016) Upstream ORFs are prevalent translational repressors in vertebrates. EMBO J 35:706–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sendoel A, Dunn JG, Rodriguez EH, Naik S, Gomez NC, Hurwitz B, Levorse J, Dill BD, Schramek D, Molina H, Weissman JS, Fuchs E (2017) Translation from unconventional 5′ start sites drives tumour initiation. Nature 541:494–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang L, Morris J, Wan J, Moore C, Fujita Y, Gillaspie S, Aube E, Nanda J, Marques M, Jangal M, Anderson A, Cox C, Hiraishi H, Dong L, Saito H, Singh CR, Witcher M, Topisirovic I, Qian S-B, Asano K (2017) Competition between translation initiation factor eIF5 and its mimic protein 5MP determines non-AUG initiation rate genome-wide. Nucleic Acids Res 45:11941–11953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kozak M (1990) Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc Natl Acad Sci USA 87:8301–8305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wethmar K, Barbosa-Silva A, Andrade-Navarro MA, Leutz A (2014) uORFdb—A comprehensive literature database on eukaryotic uORF biology. Nucleic Acids Res 42:D60–D67

    Article  CAS  PubMed  Google Scholar 

  23. Jackson RJ, Hellen CUT, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Graff JR, Konicek BW, Carter JH, Marcusson EG (2008) Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res 68:631–634

    Article  CAS  PubMed  Google Scholar 

  25. Algire MA, Maag D, Lorsch JR (2005) Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation. Mol Cell 20:251–262

    Article  CAS  PubMed  Google Scholar 

  26. Fringer JM, Acker MG, Fekete CA, Lorsch JR, Dever TE (2007) Coupled release of eukaryotic translation initiation factors 5B and 1A from 80S ribosomes following subunit joining. Mol Cell Biol 27:2384–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee S, Liu B, Lee S, Huang S-X, Shen B, Qian S-B (2012) Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc Natl Acad Sci USA 109:E2424–E2432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292

    Article  CAS  PubMed  Google Scholar 

  29. Kozak M (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196:947–950

    Article  CAS  PubMed  Google Scholar 

  30. Pisarev AV, Kolupaeva VG, Pisareva VP, Merrick WC, Hellen CUT, Pestova TV (2006) Specific functional interactions of nucleotides at key − 3 and + 4 positions flanking the initiation codon with components of the mammalian 48S translation initiation complex. Genes Dev 20:624–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kozak M (2001) Constraints on reinitiation of translation in mammals. Nucleic Acids Res 29:5226–5232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Child SJ, Miller MK, Geballe AP (1999) Translational control by an upstream open reading frame in the HER-2/neu transcript. J Biol Chem 274:24335–24341

    Article  CAS  PubMed  Google Scholar 

  33. Grant CM, Hinnebusch AG (1994) Effect of sequence context at stop codons on efficiency of reinitiation in GCN4 translational control. Mol Cell Biol 14:606–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Young SK, Willy JA, Wu C, Sachs MS, Wek RC (2015) Ribosome reinitiation directs gene-specific translation and regulates the Integrated Stress Response. J Biol Chem 290:28257–28271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Col B, Oltean S, Banerjee R (2007) Translational regulation of human methionine synthase by upstream open reading frames. Biochim Biophys Acta 1769:532–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Law GL, Raney A, Heusner C, Morris DR (2001) Polyamine regulation of ribosome pausing at the upstream open reading frame of S-adenosylmethionine decarboxylase. J Biol Chem 276:38036–38043

    CAS  PubMed  Google Scholar 

  37. Poyry TAA, Kaminski A, Jackson RJ (2004) What determines whether mammalian ribosomes resume scanning after translation of a short upstream open reading frame? Genes Dev 18:62–75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Mendell JT, Sharifi NA, Meyers JL, Martinez-Murillo F, Dietz HC (2004) Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat Genet 36:1073–1078

    Article  CAS  PubMed  Google Scholar 

  39. Gardner LB (2008) Hypoxic inhibition of nonsense-mediated RNA decay regulates gene expression and the Integrated Stress Response. Mol Cell Biol 28:3729–3741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rebbapragada I, Lykke-Andersen J (2009) Execution of nonsense-mediated mRNA decay: what defines a substrate? Curr Opin Cell Biol 21:394–402

    Article  CAS  PubMed  Google Scholar 

  41. Torrance V, Lydall D (2018) Overlapping open reading frames strongly reduce human and yeast STN1 gene expression and affect telomere function. PLoS Genet 14:e1007523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Donnelly N, Gorman AM, Gupta S, Samali A (2013) The eIF2α kinases: their structures and functions. Cell Mol Life Sci 70:3493–3511

    Article  CAS  PubMed  Google Scholar 

  43. Novoa I, Zeng H, Harding HP, Ron D (2001) Feedback inhibition of the Unfolded Protein Response by GADD34-mediated dephosphorylation of eIF2α. J Cell Biol 153:1011–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Spilka R, Ernst C, Mehta AK, Haybaeck J (2013) Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett 340:9–21

    Article  CAS  PubMed  Google Scholar 

  45. Lee Y-Y, Cevallos RC, Jan E (2009) An upstream open reading frame regulates translation of GADD34 during cellular stresses that induce eIF2α phosphorylation. J Biol Chem 284:6661–6673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633

    Article  CAS  PubMed  Google Scholar 

  47. Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450

    Article  CAS  PubMed  Google Scholar 

  48. Young SK, Palam LR, Wu C, Sachs MS, Wek RC (2016) Ribosome elongation stall directs gene-specific translation in the Integrated Stress Response. J Biol Chem 291:6546–6558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Skabkin MA, Skabkina OV, Hellen CUT, Pestova TV (2013) Reinitiation and other unconventional post-termination events during eukaryotic translation. Mol Cell 51:249–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vattem KM, Wek RC (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci 101:11269–11274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grant CM, Miller PF, Hinnebusch AG (1995) Sequences 5′ of the first upstream open reading frame in GCN4 mRNA are required for efficient translational reinitiation. Nucleic Acids Res 23:3980–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Szamecz B, Rutkai E, Cuchalová L, Munzarová V, Herrmannová A, Nielsen KH, Burela L, Hinnebusch AG, Valášek L (2008) eIF3a cooperates with sequences 5′ of uORF1 to promote resumption of scanning by post-termination ribosomes for reinitiation on GCN4 mRNA. Genes Dev 22:2414–2425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Munzarová V, Pánek J, Gunišová S, Dányi I, Szamecz B, Valášek LS (2011) Translation reinitiation relies on the interaction between eIF3a/TIF32 and progressively folded cis-acting mRNA elements preceding short uORFs. PLoS Genet 7:e1002137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Calkhoven CF, Müller C, Leutz A (2000) Translational control of C/EBPα and C/EBPβ isoform expression. Genes Dev 14:1920–1932

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wethmar K, Bégay V, Smink JJ, Zaragoza K, Wiesenthal V, Dörken B, Calkhoven CF, Leutz A (2010) C/EBPbetaDeltauORF mice-a genetic model for uORF-mediated translational control in mammals. Genes Dev 24:15–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kozak M (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 266:19867–19870

    CAS  PubMed  Google Scholar 

  57. Kozak M (1991) A short leader sequence impairs the fidelity of initiation by eukaryotic ribosomes. Gene Expr 1:111–115

    CAS  PubMed  Google Scholar 

  58. Baird TD, Palam LR, Fusakio ME, Willy JA, Davis CM, McClintick JN, Anthony TG, Wek RC (2014) Selective mRNA translation during eIF2 phosphorylation induces expression of IBTKα. Mol Biol Cell 25:1686–1697

    Article  PubMed  PubMed Central  Google Scholar 

  59. Palam LR, Baird TD, Wek RC (2011) Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J Biol Chem 286:10939–10949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao C, Datta S, Mandal P, Xu S, Hamilton T (2010) Stress-sensitive regulation of IFRD1 mRNA decay is mediated by an upstream open reading frame. J Biol Chem 285:8552–8562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen Y-J, Tan BC-M, Cheng Y-Y, Chen J-S, Lee S-C (2010) Differential regulation of CHOP translation by phosphorylated eIF4E under stress conditions. Nucleic Acids Res 38:764–777

    Article  CAS  PubMed  Google Scholar 

  62. Rutkowski DT, Arnold SM, Miller CN, Wu J, Li J, Gunnison KM, Mori K, Akha AAS, Raden D, Kaufman RJ (2006) Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol 4:e374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Starck SR, Ow Y, Jiang V, Tokuyama M, Rivera M, Qi X, Roberts RW, Shastri N (2008) A distinct translation initiation mechanism generates cryptic peptides for immune surveillance. PLoS ONE 3:e3460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Slavoff SA, Mitchell AJ, Schwaid AG, Cabili MN, Ma J, Levin JZ, Karger AD, Budnik BA, Rinn JL, Saghatelian A (2013) Peptidomic discovery of short open reading frame–encoded peptides in human cells. Nat Chem Biol 9:59–64

    Article  CAS  PubMed  Google Scholar 

  65. Young SK, Baird TD, Wek RC (2016) Translation regulation of the glutamyl-prolyl-tRNA synthetase gene EPRS through bypass of upstream open reading frames with noncanonical initiation codons. J Biol Chem 291:10824–10835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gao X, Wan J, Liu B, Ma M, Shen B, Qian S-B (2015) Quantitative profiling of initiating ribosomes in vivo. Nat Methods 12:147–153

    Article  CAS  PubMed  Google Scholar 

  67. Schwab SR, Shugart JA, Horng T, Malarkannan S, Shastri N (2004) Unanticipated antigens: translation initiation at CUG with leucine. PLoS Biol 2:e366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Starck SR, Jiang V, Pavon-Eternod M, Prasad S, McCarthy B, Pan T, Shastri N (2012) Leucine-tRNA initiates at CUG start codons for protein synthesis and presentation by MHC class I. Science 336:1719–1723

    Article  CAS  PubMed  Google Scholar 

  69. Starck SR, Tsai JC, Chen K, Shodiya M, Wang L, Yahiro K, Martins-Green M, Shastri N, Walter P (2016) Translation from the 5′ untranslated region shapes the integrated stress response. Science 351:aad3867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Loughran G, Sachs MS, Atkins JF, Ivanov IP (2012) Stringency of start codon selection modulates autoregulation of translation initiation factor eIF5. Nucleic Acids Res 40:2898–2906

    Article  CAS  PubMed  Google Scholar 

  71. Kozak M (1989) Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Mol Cell Biol 9:5073–5080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xue S, Barna M (2012) Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol 13:355–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sauert M, Temmel H, Moll I (2015) Heterogeneity of the translational machinery: variations on a common theme. Biochimie 114:39–47

    Article  CAS  PubMed  Google Scholar 

  74. Shi Z, Fujii K, Kovary KM, Genuth NR, Röst HL, Teruel MN, Barna M (2017) Heterogeneous ribosomes preferentially translate distinct subpools of mRNAs genome-wide. Mol Cell 67:71–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Oyama M, Kozuka-Hata H, Suzuki Y, Semba K, Yamamoto T, Sugano S (2007) Diversity of translation start sites may define increased complexity of the human short ORFeome. Mol Cell Proteomics 6:1000–1006

    Article  CAS  PubMed  Google Scholar 

  76. Crappé J, Ndah E, Koch A, Steyaert S, Gawron D, De Keulenaer S, De Meester E, De Meyer T, Van Criekinge W, Van Damme P, Menschaert G (2015) PROTEOFORMER: deep proteome coverage through ribosome profiling and MS integration. Nucleic Acids Res 43:e29

    Article  PubMed  CAS  Google Scholar 

  77. Raj A, Wang SH, Shim H, Harpak A, Li YI, Engelmann B, Stephens M, Gilad Y, Pritchard JK (2016) Thousands of novel translated open reading frames in humans inferred by ribosome footprint profiling. elife 5:e13328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Raney A, Law GL, Mize GJ, Morris DR (2002) Regulated translation termination at the upstream open reading frame in s-adenosylmethionine decarboxylase mRNA. J Biol Chem 277:5988–5994

    Article  CAS  PubMed  Google Scholar 

  79. Pendleton LC, Goodwin BL, Solomonson LP, Eichler DC (2005) Regulation of endothelial argininosuccinate synthase expression and NO production by an upstream open reading frame. J Biol Chem 280:24252–24260

    Article  CAS  PubMed  Google Scholar 

  80. Akimoto C, Sakashita E, Kasashima K, Kuroiwa K, Tominaga K, Hamamoto T, Endo H (2013) Translational repression of the McKusick-Kaufman syndrome transcript by unique upstream open reading frames encoding mitochondrial proteins with alternative polyadenylation sites. Biochim Biophys Acta 1830:2728–2738

    Article  CAS  PubMed  Google Scholar 

  81. Besançon R, Valsesia-Wittmann S, Locher C, Delloye-Bourgeois C, Furhman L, Tutrone G, Bertrand C, Jallas A-C, Garin E, Puisieux A (2009) Upstream ORF affects MYCN translation depending on exon 1b alternative splicing. BMC Cancer 9:445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wethmar K, Schulz J, Muro EM, Talyan S, Andrade-Navarro MA, Leutz A (2016) Comprehensive translational control of tyrosine kinase expression by upstream open reading frames. Oncogene 35:1736–1742

    Article  CAS  PubMed  Google Scholar 

  83. Bersano A, Ballabio E, Bresolin N, Candelise L (2008) Genetic polymorphisms for the study of multifactorial stroke. Hum Mutat 29:776–795

    Article  CAS  PubMed  Google Scholar 

  84. Kanaji T, Okamura T, Osaki K, Kuroiwa M, Shimoda K, Hamasaki N, Niho Y (1998) A common genetic polymorphism (46 C to T substitution) in the 5′-untranslated region of the coagulation factor XII gene is associated with low translation efficiency and decrease in plasma factor XII level. Blood 91:2010–2014

    CAS  PubMed  Google Scholar 

  85. Kondo S, Schutte BC, Richardson RJ, Bjork BC, Knight AS, Watanabe Y, Howard E, De Lima RLLF, Daack-Hirsch S, Sander A, McDonald-McGinn DM, Zackai EH, Lammer EJ, Aylsworth AS, Ardinger HH, Lidral AC, Pober BR, Moreno L, Arcos-Burgos M, Valencia C, Houdayer C, Bahuau M, Moretti-Ferreira D, Richieri-Costa A, Dixon MJ, Murray JC (2002) Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes. Nat Genet 32:285–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Poulat F, Desclozeaux M, Tuffery S, Jay P, Boizet B, Berta P (1998) Mutation in the 5′ noncoding region of the SRY gene in an XY sex-reversed patient. Hum Mutat Suppl 1:S192–S194

    Article  Google Scholar 

  87. Witt H, Luck W, Hennies HC, Claßen M, Kage A, Laß U, Landt O, Becker M (2000) Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet 25:213–216

    Article  CAS  PubMed  Google Scholar 

  88. Silva J, Fernandes R, Romão L (2017) Gene expression regulation by upstream open reading frames in rare diseases. J Rare Dis Res Treat 2:33–38

    Article  Google Scholar 

  89. Nelson ND, Marcogliese A, Bergstrom K, Scheurer M, Mahoney D, Bertuch AA (2016) Thrombopoietin measurement as a key component in the evaluation of pediatric thrombocytosis. Pediatr Blood Cancer 63:1484–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ghilardi N, Wiestner A, Kikuchi M, Ohsaka A, Skoda RC (1999) Hereditary thrombocythaemia in a Japanese family is caused by a novel point mutation in the thrombopoietin gene. Br J Haematol 107:310–316

    Article  CAS  PubMed  Google Scholar 

  91. Bisio A, Nasti S, Jordan JJ, Gargiulo S, Pastorino L, Provenzani A, Quattrone A, Queirolo P, Bianchi-Scarrà G, Ghiorzo P, Inga A (2010) Functional analysis of CDKN2A/p16INK4a 5′-UTR variants predisposing to melanoma. Hum Mol Genet 19:1479–1491

    Article  CAS  PubMed  Google Scholar 

  92. Liu L, Dilworth D, Gao L, Monzon J, Summers A, Lassam N, Hogg D (1999) Mutation of the CDKN2A 5′ UTR creates an aberrant initiation codon and predisposes to melanoma. Nat Genet 21:128–132

    Article  PubMed  CAS  Google Scholar 

  93. Wen Y, Liu Y, Xu Y, Zhao Y, Hua R, Wang K, Sun M, Li Y, Yang S, Zhang X-J, Kruse R, Cichon S, Betz RC, Nöthen MM, van Steensel MAM, van Geel M, Steijlen PM, Hohl D, Huber M, Dunnill GS, Kennedy C, Messenger A, Munro CS, Terrinoni A, Hovnanian A, Bodemer C, de Prost Y, Paller AS, Irvine AD, Sinclair R, Green J, Shang D, Liu Q, Luo Y, Jiang L, Chen H-D, Lo WH-Y, McLean WHI, He C-D, Zhang X (2009) Loss-of-function mutations of an inhibitory upstream ORF in the human hairless transcript cause Marie Unna hereditary hypotrichosis. Nat Genet 41:228–233

    Article  CAS  PubMed  Google Scholar 

  94. Zhou Y, Koelling N, Fenwick AL, McGowan SJ, Calpena E, Wall SA, Smithson SF, Wilkie AOM, Twigg SRF (2018) Disruption of TWIST1 translation by 5′ UTR variants in Saethre-Chotzen syndrome. Hum Mutat 39:1360–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kitano S, Kurasawa H, Aizawa Y (2018) Transposable elements shape the human proteome landscape via formation of cis-acting upstream open reading frames. Genes Cells 23:274–284

    Article  CAS  PubMed  Google Scholar 

  96. McGillivray P, Ault R, Pawashe M, Kitchen R, Balasubramanian S, Gerstein M (2018) A comprehensive catalog of predicted functional upstream open reading frames in humans. Nucleic Acids Res 46:3326–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    Article  CAS  PubMed  Google Scholar 

  98. Somers J, Wilson LA, Kilday J-P, Horvilleur E, Cannell IG, Pöyry TAA, Cobbold LC, Kondrashov A, Knight JRP, Puget S, Grill J, Grundy RG, Bushell M, Willis AE (2015) A common polymorphism in the 5′ UTR of ERCC5 creates an upstream ORF that confers resistance to platinum-based chemotherapy. Genes Dev 29:1891–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pellegata NS, Quintanilla-Martinez L, Siggelkow H, Samson E, Bink K, Höfler H, Fend F, Graw J, Atkinson MJ (2006) Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 103:15558–15563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Occhi G, Regazzo D, Trivellin G, Boaretto F, Ciato D, Bobisse S, Ferasin S, Cetani F, Pardi E, Korbonits M, Pellegata NS, Sidarovich V, Quattrone A, Opocher G, Mantero F, Scaroni C (2013) A novel mutation in the upstream open reading frame of the CDKN1B gene Causes a MEN4 phenotype. PLoS Genet 9:e1003350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jones L, Goode L, Davila E, Brown A, McCarthy DM, Sharma N, Bhide PG, Armata IA (2017) Translational effects and coding potential of an upstream open reading frame associated with DOPA Responsive Dystonia. Biochim Biophys Acta Mol basis Dis 1863:1171–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schulz J, Mah N, Neuenschwander M, Kischka T, Ratei R, Schlag PM, Castaños-Vélez E, Fichtner I, Tunn P-U, Denkert C, Klaas O, Berdel WE, von Kries JP, Makalowski W, Andrade-Navarro MA, Leutz A, Wethmar K (2018) Loss-of-function uORF mutations in human malignancies. Sci Rep 8:2395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Brown CY, Mize GJ, Pineda M, George DL, Morris DR (1999) Role of two upstream open reading frames in the translational control of oncogene mdm2. Oncogene 18:5631–5637

    Article  CAS  PubMed  Google Scholar 

  104. Sobczak K, Krzyzosiak WJ (2002) Structural determinants of BRCA1 translational regulation. J Biol Chem 277:17349–17358

    Article  CAS  PubMed  Google Scholar 

  105. Mehta A, Trotta CR, Peltz SW (2006) Derepression of the Her-2 uORF is mediated by a novel post-transcriptional control mechanism in cancer cells. Genes Dev 20:939–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work partially supported by UID/MULTI/04046/2013 centre grant from FCT, Portugal (to BioISI), and by National Institute of Health Dr. Ricardo Jorge. J.F.P.S. is recipient of a fellowship from BioSys PhD programme (SFRH/BD/106081/2015) from FCT (Portugal). R.Q.F. is recipient of a fellowship from BioSys PhD programme (SFRH/BD/114392/2016) from FCT (Portugal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luísa Romão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silva, J., Fernandes, R., Romão, L. (2019). Translational Regulation by Upstream Open Reading Frames and Human Diseases. In: Romão, L. (eds) The mRNA Metabolism in Human Disease. Advances in Experimental Medicine and Biology, vol 1157. Springer, Cham. https://doi.org/10.1007/978-3-030-19966-1_5

Download citation

Publish with us

Policies and ethics