Skip to main content
Log in

More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The scanning model for eukaryotic mRNA translation initiation states that the small ribosomal subunit, along with initiation factors, binds at the cap structure at the 5′ end of the mRNA and scans the 5′ untranslated region (5′UTR) until an initiation codon is found. However, under conditions that impair canonical cap-dependent translation, the synthesis of some proteins is kept by alternative mechanisms that are required for cell survival and stress recovery. Alternative modes of translation initiation include cap- and/or scanning-independent mechanisms of ribosomal recruitment. In most cap-independent translation initiation events there is a direct recruitment of the 40S ribosome into a position upstream, or directly at, the initiation codon via a specific internal ribosome entry site (IRES) element in the 5′UTR. Yet, in some cellular mRNAs, a different translation initiation mechanism that is neither cap- nor IRES-dependent seems to occur through a special RNA structure called cap-independent translational enhancer (CITE). Recent evidence uncovered a distinct mechanism through which mRNAs containing N 6-methyladenosine (m6A) residues in their 5′UTR directly bind eukaryotic initiation factor 3 (eIF3) and the 40S ribosomal subunit in order to initiate translation in the absence of the cap-binding proteins. This review focuses on the important role of cap-independent translation mechanisms in human cells and how these alternative mechanisms can either act individually or cooperate with other cis-acting RNA regulons to orchestrate specific translational responses triggered upon several cellular stress states, and diseases such as cancer. Elucidation of these non-canonical mechanisms reveals the complexity of translational control and points out their potential as prospective novel therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745. doi:10.1016/j.cell.2009.01.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mathews M, Sonenberg N, Hershey J (2007) Origins and Principles of Translational Control. In: Mathews M, Sonenberg N, Hershey J (ed) Translational control in biology and medicine, Monograph, vol 48. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1–40. ISBN 978-087969767-93

  3. Hershey JWB, Sonenberg N, Mathews MB (2012) Principles of translational control: an overview. Cold Spring Harb Perspect Biol 4:a011528. doi:10.1101/cshperspect.a011528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Jackson RJ, Hellen CUT, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127. doi:10.1038/nrm2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Piccirillo CA, Bjur E, Topisirovic I et al (2014) Translational control of immune responses: from transcripts to translatomes. Nat Immunol 15:503–511. doi:10.1038/ni.2891

    Article  CAS  PubMed  Google Scholar 

  6. Topisirovic I, Sonenberg N (2011) mRNA translation and energy metabolism in cancer: the role of the MAPK and mTORC1 pathways. Cold Spring Harb Symp Quant Biol 76:355–367. doi:10.1101/sqb.2011.76.010785

    Article  CAS  PubMed  Google Scholar 

  7. Holcik M, Sonenberg N (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6:318–327. doi:10.1038/nrm1618

    Article  CAS  PubMed  Google Scholar 

  8. Aitken CE, Lorsch JR (2012) A mechanistic overview of translation initiation in eukaryotes. Nat Struct Mol Biol 19:568–576. doi:10.1038/nsmb.2303

    Article  CAS  PubMed  Google Scholar 

  9. Hinnebusch AG, Lorsch JR (2012) The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb Perspect Biol 4:a011544–a011544. doi:10.1101/cshperspect.a011544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kozak M (1989) The scanning model for translation: an update. J Cell Biol 108:229–241

    Article  CAS  PubMed  Google Scholar 

  11. Kozak M (2002) Pushing the limits of the scanning mechanism for initiation of translation. Gene 299:1–34

    Article  CAS  PubMed  Google Scholar 

  12. Hinnebusch AG (2014) The scanning mechanism of eukaryotic translation initiation. Annu Rev Biochem 83:779–812. doi:10.1146/annurev-biochem-060713-035802

    Article  CAS  PubMed  Google Scholar 

  13. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292. doi:10.1016/0092-8674(86)90762-2

    Article  CAS  PubMed  Google Scholar 

  14. Kozak M (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196:947–950

    Article  CAS  PubMed  Google Scholar 

  15. Pesole G, Gissi C, Grillo G et al (2000) Analysis of oligonucleotide AUG start codon context in eukaryotic mRNAs. Gene 261:85–91

    Article  CAS  PubMed  Google Scholar 

  16. Koumenis C, Naczki C, Koritzinsky M et al (2002) Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22:7405–7416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barbosa C, Peixeiro I, Romão L (2013) Gene expression regulation by upstream open reading frames and human disease. PLoS Genet 9:e1003529. doi:10.1371/journal.pgen.1003529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xue S, Tian S, Fujii K et al (2015) RNA regulons in Hox 5′ UTRs confer ribosome specificity to gene regulation. Nature 517:33–38. doi:10.1038/nature14010

    Article  CAS  PubMed  Google Scholar 

  19. Merrick WC (2004) Cap-dependent and cap-independent translation in eukaryotic systems. Gene 332:1–11. doi:10.1016/j.gene.2004.02.051

    Article  CAS  PubMed  Google Scholar 

  20. Sonenberg N, Hinnebusch AG (2007) New modes of translational control in development, behavior, and disease. Mol Cell 28:721–729. doi:10.1016/j.molcel.2007.11.018

    Article  CAS  PubMed  Google Scholar 

  21. Martínez-Salas E, Piñeiro D, Fernández N (2012) Alternative mechanisms to initiate translation in eukaryotic mRNAs. Comp Funct Genomics 2012:391546. doi:10.1155/2012/391546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Jackson RJ (2013) The current status of vertebrate cellular mRNA IRESs. Cold Spring Harb Perspect Biol 5:a011569–a011569. doi:10.1101/cshperspect.a011569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Elfakess R, Dikstein R (2008) A translation initiation element specific to mRNAs with very short 5′UTR that also regulates transcription. PLoS One 3:e3094. doi:10.1371/journal.pone.0003094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Elfakess R, Sinvani H, Haimov O et al (2011) Unique translation initiation of mRNAs-containing TISU element. Nucleic Acids Res 39:7598–7609. doi:10.1093/nar/gkr484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dikstein R (2012) Transcription and translation in a package deal: the TISU paradigm. Gene 491:1–4. doi:10.1016/j.gene.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  26. Morley SJ, Coldwell MJ (2008) A cunning stunt: an alternative mechanism of eukaryotic translation initiation. Sci Signal 1:pe32. doi:10.1126/scisignal.125pe32

    Article  PubMed  Google Scholar 

  27. Koh DC, Edelman GM, Mauro VP (2013) Physical evidence supporting a ribosomal shunting mechanism of translation initiation for BACE1 mRNA. Translation (Austin, Tex) 1:e24400. doi:10.4161/trla.24400

    Google Scholar 

  28. Haimov O, Sinvani H, Dikstein R (2015) Cap-dependent, scanning-free translation initiation mechanisms. Biochim Biophys Acta 1849:1313–1318. doi:10.1016/j.bbagrm.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  29. Ben-Asouli Y, Banai Y, Pel-Or Y et al (2002) Human interferon-gamma mRNA autoregulates its translation through a pseudoknot that activates the interferon-inducible protein kinase PKR. Cell 108:221–232

    Article  CAS  PubMed  Google Scholar 

  30. Kumari S, Bugaut A, Huppert JL, Balasubramanian S (2007) An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol 3:218–221. doi:10.1038/nchembio864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dai J, Liu Z-Q, Wang X-Q et al (2015) Discovery of small molecules for up-regulating the translation of antiamyloidogenic secretase, a disintegrin and metalloproteinase 10 (ADAM10), by binding to the G-quadruplex-forming sequence in the 5′ untranslated region (UTR) of its mRNA. J Med Chem 58:3875–3891. doi:10.1021/acs.jmedchem.5b00139

    Article  CAS  PubMed  Google Scholar 

  32. Schofield JPR, Cowan JL, Coldwell MJ (2015) G-quadruplexes mediate local translation in neurons. Biochem Soc Trans 43:338–342. doi:10.1042/BST20150053

    Article  CAS  PubMed  Google Scholar 

  33. Liu B, Qian S-B (2014) Translational reprogramming in cellular stress response: translational reprogramming in stress. Wiley Interdiscip Rev RNA 5:301–305. doi:10.1002/wrna.1212

    Article  CAS  PubMed  Google Scholar 

  34. Leprivier G, Rotblat B, Khan D et al (2015) Stress-mediated translational control in cancer cells. Biochim Biophys Acta Gene Regul Mech 1849:845–860. doi:10.1016/j.bbagrm.2014.11.002

    Article  CAS  Google Scholar 

  35. Shatsky IN, Dmitriev SE, Terenin IM, Andreev DEE (2010) Cap- and IRES-independent scanning mechanism of translation initiation as an alternative to the concept of cellular IRESs. Mol Cells 30:285–293. doi:10.1007/s10059-010-0149-1

    Article  CAS  PubMed  Google Scholar 

  36. Terenin IM, Andreev DE, Dmitriev SE, Shatsky IN (2013) A novel mechanism of eukaryotic translation initiation that is neither m7G-cap-, nor IRES-dependent. Nucleic Acids Res 41:1807–1816. doi:10.1093/nar/gks1282

    Article  CAS  PubMed  Google Scholar 

  37. Andreev DE, Dmitriev SE, Zinovkin R et al (2012) The 5′ untranslated region of Apaf-1 mRNA directs translation under apoptosis conditions via a 5′ end-dependent scanning mechanism. FEBS Lett 586:4139–4143. doi:10.1016/j.febslet.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  38. Zhou J, Rode KA, Qian S-B (2016) m(6)A: a novel hallmark of translation. Cell Cycle 15:309–310. doi:10.1080/15384101.2015.1125240

    Article  CAS  PubMed  Google Scholar 

  39. Meyer KD, Patil DP, Zhou J et al (2015) 5′ UTR m(6)A promotes cap-independent translation. Cell 163:999–1010. doi:10.1016/j.cell.2015.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou J, Wan J, Gao X et al (2015) Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 526:591–594. doi:10.1038/nature15377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Silvera D, Formenti SC, Schneider RJ (2010) Translational control in cancer. Nat Rev Cancer 10:254–266

    Article  CAS  PubMed  Google Scholar 

  42. Ruggero D (2013) Translational control in cancer etiology. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a012336

    PubMed  PubMed Central  Google Scholar 

  43. Dobbyn HC, Hill K, Hamilton TL et al (2007) Regulation of BAG-1 IRES-mediated translation following chemotoxic stress. Oncogene 27:1167–1174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Holcik M, Gordon BW, Korneluk RG (2003) The Internal Ribosome Entry Site-mediated translation of antiapoptotic protein XIAP is modulated by the heterogeneous nuclear ribonucleoproteins C1 and C2. Mol Cell Biol 23:280–288. doi:10.1128/MCB.23.1.280-288.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yoon A, Peng G, Brandenburger Y et al (2006) Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science 312:902–906. doi:10.1126/science.1123835

    Article  CAS  PubMed  Google Scholar 

  46. Graber TE, Baird SD, Kao PN et al (2010) NF45 functions as an IRES trans-acting factor that is required for translation of cIAP1 during the unfolded protein response. Cell Death Differ 17:719–729

    Article  CAS  PubMed  Google Scholar 

  47. Willimott S, Wagner SD (2010) Post-transcriptional and post-translational regulation of Bcl2. Biochem Soc Trans 38:1571–1575. doi:10.1042/BST0381571

    Article  CAS  PubMed  Google Scholar 

  48. Andreucci E, Bianchini F, Biagioni A et al (2016) Roles of different IRES-dependent FGF2 isoforms in the acquisition of the major aggressive features of human metastatic melanoma. J Mol Med (Berl). doi:10.1007/s00109-016-1463-7

    Google Scholar 

  49. Holmes B, Lee J, Landon KA et al (2016) Mechanistic target of rapamycin (mTOR) inhibition synergizes with reduced internal ribosome entry site (IRES)-mediated translation of cyclin D1 and c-MYC mRNAs to treat glioblastoma. J Biol Chem 291:14146–14159. doi:10.1074/jbc.M116.726927

    Article  CAS  PubMed  Google Scholar 

  50. Bernstein J, Sella O, Le SY, Elroy-Stein O (1997) PDGF2/c-sis mRNA leader contains a differentiation-linked internal ribosomal entry site (D-IRES). J Biol Chem 272:9356–9362

    Article  CAS  PubMed  Google Scholar 

  51. Dai N, Rapley J, Angel M et al (2011) mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry. Genes Dev 25:1159–1172. doi:10.1101/gad.2042311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zheng Y, Miskimins WK (2011) Far upstream element binding protein 1 activates translation of p27Kip1 mRNA through its internal ribosomal entry site. Int J Biochem Cell Biol 43:1641–1648. doi:10.1016/j.biocel.2011.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Candeias MM, Powell DJ, Roubalova E et al (2006) Expression of p53 and p53/47 are controlled by alternative mechanisms of messenger RNA translation initiation. Oncogene 25:6936–6947. doi:10.1038/sj.onc.1209996

    Article  CAS  PubMed  Google Scholar 

  54. Tinton SA, Schepens B, Bruynooghe Y et al (2005) Regulation of the cell-cycle-dependent internal ribosome entry site of the PITSLRE protein kinase: roles of Unr (upstream of N-ras) protein and phosphorylated translation initiation factor eIF-2alpha. Biochem J 385:155–163. doi:10.1042/BJ20040963

    Article  CAS  PubMed  Google Scholar 

  55. Bastide A, Karaa Z, Bornes S et al (2008) An upstream open reading frame within an IRES controls expression of a specific VEGF-A isoform. Nucleic Acids Res 36:2434–2445. doi:10.1093/nar/gkn093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Morfoisse F, Kuchnio A, Frainay C et al (2014) Hypoxia induces VEGF-C expression in metastatic tumor cells via a HIF-1α-independent translation-mediated mechanism. Cell Rep 6:155–167. doi:10.1016/j.celrep.2013.12.011

    Article  CAS  PubMed  Google Scholar 

  57. Erickson FL, Hannig EM (1996) Ligand interactions with eukaryotic translation initiation factor 2: role of the gamma-subunit. EMBO J 15:6311–6320

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gomez E, Mohammad SS, Pavitt GD (2002) Characterization of the minimal catalytic domain within eIF2B: the guanine-nucleotide exchange factor for translation initiation. EMBO J 21:5292–5301. doi:10.1093/emboj/cdf515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kapp LD, Lorsch JR (2004) GTP-dependent recognition of the methionine moiety on initiator tRNA by translation factor eIF2. J Mol Biol 335:923–936. doi:10.1016/j.jmb.2003.11.025

    Article  CAS  PubMed  Google Scholar 

  60. Valásek L, Nielsen KH, Hinnebusch AG (2002) Direct eIF2-eIF3 contact in the multifactor complex is important for translation initiation in vivo. EMBO J 21:5886–5898

    Article  PubMed  PubMed Central  Google Scholar 

  61. Olsen DS, Savner EM, Mathew A et al (2003) Domains of eIF1A that mediate binding to eIF2, eIF3 and eIF5B and promote ternary complex recruitment in vivo. EMBO J 22:193–204. doi:10.1093/emboj/cdg030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pestova TV, Borukhov SI, Hellen CUT (1998) Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394:854–859. doi:10.1038/29703

    Article  CAS  PubMed  Google Scholar 

  63. Majumdar R (2003) Mammalian translation initiation factor eIF1 functions with eIF1A and eIF3 in the formation of a stable 40S preinitiation complex. J Biol Chem 278:6580–6587. doi:10.1074/jbc.M210357200

    Article  CAS  PubMed  Google Scholar 

  64. Kolupaeva VG (2005) Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. RNA 11:470–486. doi:10.1261/rna.7215305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lomakin IB, Steitz TA (2013) The initiation of mammalian protein synthesis and mRNA scanning mechanism. Nature 500:307–311. doi:10.1038/nature12355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. des Georges A, Dhote V, Kuhn L et al (2015) Structure of mammalian eIF3 in the context of the 43S preinitiation complex. Nature 525:491–495. doi:10.1038/nature14891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pestova TV, Kolupaeva VG (2002) The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev 16:2906–2922. doi:10.1101/gad.1020902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pause A, Sonenberg N (1992) Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J 11:2643–2654

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Oberer M, Marintchev A, Wagner G (2005) Structural basis for the enhancement of eIF4A helicase activity by eIF4G. Genes Dev 19:2212–2223. doi:10.1101/gad.1335305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pestova TV, Lomakin IB, Lee JH et al (2000) The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403:332–335. doi:10.1038/35002118

    Article  CAS  PubMed  Google Scholar 

  71. Özeş AR, Feoktistova K, Avanzino BC et al (2011) Duplex unwinding and ATPase activities of the DEAD-box helicase eIF4A are coupled by eIF4G and eIF4B. J Mol Biol 412:674–687. doi:10.1016/j.jmb.2011.08.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Villa N, Do A, Hershey JWB, Fraser CS (2013) Human eukaryotic initiation factor 4G (eIF4G) protein binds to eIF3c, -d, and -e to promote mRNA recruitment to the ribosome. J Biol Chem 288:32932–32940. doi:10.1074/jbc.M113.517011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wagner S, Herrmannová A, Malík R et al (2014) Functional and biochemical characterization of human eukaryotic translation initiation factor 3 in living cells. Mol Cell Biol 34:3041–3052. doi:10.1128/MCB.00663-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Sen ND, Zhou F, Harris MS et al (2016) eIF4B stimulates translation of long mRNAs with structured 5′ UTRs and low closed-loop potential but weak dependence on eIF4G. Proc Natl Acad Sci USA 113:10464–10472. doi:10.1073/pnas.1612398113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hashem Y, des Georges A, Dhote V et al (2013) Structure of the mammalian ribosomal 43S preinitiation complex bound to the scanning factor DHX29. Cell 153:1108–1119. doi:10.1016/j.cell.2013.04.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pisareva VP, Pisarev AV (2016) DHX29 reduces leaky scanning through an upstream AUG codon regardless of its nucleotide context. Nucleic Acids Res 44:4252–4265. doi:10.1093/nar/gkw240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. De La Cruz J, Iost I, Kressler D, Linder P (1997) The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. Proc Natl Acad Sci 94:5201–5206

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lind C, Åqvist J (2016) Principles of start codon recognition in eukaryotic translation initiation. Nucleic Acids Res 44:8425–8432. doi:10.1093/nar/gkw534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pisareva VP, Pisarev AV (2014) eIF5 and eIF5B together stimulate 48S initiation complex formation during ribosomal scanning. Nucleic Acids Res 42:12052–12069. doi:10.1093/nar/gku877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kuhle B, Ficner R (2014) eIF5B employs a novel domain release mechanism to catalyze ribosomal subunit joining. EMBO J 33:1177–1191. doi:10.1002/embj.201387344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee JH, Pestova TV, Shin B-S et al (2002) Initiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation. Proc Natl Acad Sci USA 99:16689–16694. doi:10.1073/pnas.262569399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shin B-S, Maag D, Roll-Mecak A et al (2002) Uncoupling of initiation factor eIF5B/IF2 GTPase and translational activities by mutations that lower ribosome affinity. Cell 111:1015–1025

    Article  CAS  PubMed  Google Scholar 

  83. Acker MG, Shin B-S, Dever TE, Lorsch JR (2006) Interaction between eukaryotic initiation factors 1A and 5B is required for efficient ribosomal subunit joining. J Biol Chem 281:8469–8475. doi:10.1074/jbc.M600210200

    Article  CAS  PubMed  Google Scholar 

  84. Jennings MD, Zhou Y, Mohammad-Qureshi SS et al (2013) eIF2B promotes eIF5 dissociation from eIF2*GDP to facilitate guanine nucleotide exchange for translation initiation. Genes Dev 27:2696–2707. doi:10.1101/gad.231514.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hershey JW (2010) Regulation of protein synthesis and the role of eIF3 in cancer. Braz J Med Biol Res 43:920–930

    Article  CAS  PubMed  Google Scholar 

  86. Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433:477–480. doi:10.1038/nature03205

    Article  CAS  PubMed  Google Scholar 

  87. Hellen CUT (2001) Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15:1593–1612. doi:10.1101/gad.891101

    Article  CAS  PubMed  Google Scholar 

  88. Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–325. doi:10.1038/334320a0

    Article  CAS  PubMed  Google Scholar 

  89. Jang S, Krausslich H, Nicklin M et al (1988) A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62:2636–2643

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lozano G, Martínez-Salas E (2015) Structural insights into viral IRES-dependent translation mechanisms. Curr Opin Virol 12:113–120. doi:10.1016/j.coviro.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  91. Hellen CU (2009) IRES-induced conformational changes in the ribosome and the mechanism of translation initiation by internal ribosomal entry. Biochim Biophys Acta Gene Regul Mech 1789:558–570. doi:10.1016/j.bbagrm.2009.06.001

    Article  CAS  Google Scholar 

  92. Komar AA, Hatzoglou M (2015) Exploring internal ribosome entry sites as therapeutic targets. Front Oncol 5:233. doi:10.3389/fonc.2015.00233

    Article  PubMed  PubMed Central  Google Scholar 

  93. Balvay L, Soto Rifo R, Ricci EP et al (2009) Structural and functional diversity of viral IRESes. Biochim Biophys Acta 1789:542–557. doi:10.1016/j.bbagrm.2009.07.005

    Article  CAS  PubMed  Google Scholar 

  94. Kieft JS (2008) Viral IRES RNA structures and ribosome interactions. Trends Biochem Sci 33:274–283. doi:10.1016/j.tibs.2008.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Filbin ME, Kieft JS (2009) Toward a structural understanding of IRES RNA function. Curr Opin Struct Biol 19:267–276. doi:10.1016/j.sbi.2009.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kieft JS, Zhou K, Jubin R et al (1999) The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. J Mol Biol 292:513–529. doi:10.1006/jmbi.1999.3095

    Article  CAS  PubMed  Google Scholar 

  97. Song Y, Tzima E, Ochs K et al (2005) Evidence for an RNA chaperone function of polypyrimidine tract-binding protein in picornavirus translation. RNA 11:1809–1824. doi:10.1261/rna.7430405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Macejak DG, Sarnow P (1991) Internal initiation of translation mediated by the 5′ leader of a cellular mRNA. Nature 353:90–94. doi:10.1038/353090a0

    Article  CAS  PubMed  Google Scholar 

  99. Spriggs KA, Stoneley M, Bushell M, Willis AE (2008) Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biol Cell 100:27–38. doi:10.1042/BC20070098

    Article  CAS  PubMed  Google Scholar 

  100. Weingarten-Gabbay S, Elias-Kirma S, Nir R et al (2016) Comparative genetics. Systematic discovery of cap-independent translation sequences in human and viral genomes. Science. doi:10.1126/science.aad4939

    PubMed  Google Scholar 

  101. Mokrejš M, Mašek T, Vopálenskỳ V et al (2010) IRESite—a tool for the examination of viral and cellular internal ribosome entry sites. Nucleic Acids Res 38:D131–D136

    Article  PubMed  CAS  Google Scholar 

  102. Shi Y, Yang Y, Hoang B et al (2016) Therapeutic potential of targeting IRES-dependent c-myc translation in multiple myeloma cells during ER stress. Oncogene 35:1015–1024. doi:10.1038/onc.2015.156

    Article  CAS  PubMed  Google Scholar 

  103. Philippe C, Dubrac A, Quelen C et al (2016) PERK mediates the IRES-dependent translational activation of mRNAs encoding angiogenic growth factors after ischemic stress. Sci Signal 9:ra44. doi:10.1126/scisignal.aaf2753

    Article  PubMed  CAS  Google Scholar 

  104. Khan D, Katoch A, Das A et al (2015) Reversible induction of translational isoforms of p53 in glucose deprivation. Cell Death Differ 22:1203–1218. doi:10.1038/cdd.2014.220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liberman N, Gandin V, Svitkin YV et al (2015) DAP5 associates with eIF2 and eIF4AI to promote internal ribosome entry site driven translation. Nucleic Acids Res 43:3764–3775. doi:10.1093/nar/gkv205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Vaklavas C, Grizzle WE, Choi H et al (2016) IRES inhibition induces terminal differentiation and synchronized death in triple-negative breast cancer and glioblastoma cells. Tumour Biol 37:13247–13264. doi:10.1007/s13277-016-5161-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Komar AA, Hatzoglou M (2005) Internal ribosome entry sites in cellular mRNAs: mystery of their existence. J Biol Chem 280:23425–23428. doi:10.1074/jbc.R400041200

    Article  CAS  PubMed  Google Scholar 

  108. Komar AA, Hatzoglou M (2011) Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle 10:229–240. doi:10.4161/cc.10.2.14472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lewis SM, Holcik M (2008) For IRES trans-acting factors, it is all about location. Oncogene 27:1033–1035. doi:10.1038/sj.onc.1210777

    Article  CAS  PubMed  Google Scholar 

  110. Spriggs KA, Bushell M, Mitchell SA, Willis AE (2005) Internal ribosome entry segment-mediated translation during apoptosis: the role of IRES-trans-acting factors. Cell Death Differ 12:585–591. doi:10.1038/sj.cdd.4401642

    Article  CAS  PubMed  Google Scholar 

  111. Sweeney TR, Abaeva IS, Pestova TV, Hellen CUT (2014) The mechanism of translation initiation on Type 1 picornavirus IRESs. EMBO J 33:76–92. doi:10.1002/embj.201386124

    Article  CAS  PubMed  Google Scholar 

  112. Baird SD, Turcotte M, Korneluk RG, Holcik M (2006) Searching for IRES. RNA 12:1755–1785. doi:10.1261/rna.157806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Le SY, Maizel JV Jr (1997) A common RNA structural motif involved in the internal initiation of translation of cellular mRNAs. Nucleic Acids Res 25:362–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Grillo G (2003) PatSearch: a program for the detection of patterns and structural motifs in nucleotide sequences. Nucleic Acids Res 31:3608–3612. doi:10.1093/nar/gkg548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jackson RJ (1991) mRNA translation. Initiation without an end. Nature 353:14–15. doi:10.1038/353014a0

    CAS  PubMed  Google Scholar 

  116. Riley A, Jordan LE, Holcik M (2010) Distinct 5′ UTRs regulate XIAP expression under normal growth conditions and during cellular stress. Nucleic Acids Res 38:4665–4674. doi:10.1093/nar/gkq241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Thakor N, Holcik M (2012) IRES-mediated translation of cellular messenger RNA operates in eIF2-independent manner during stress. Nucleic Acids Res 40:541–552. doi:10.1093/nar/gkr701

    Article  CAS  PubMed  Google Scholar 

  118. Holcik M (2015) Could the eIF2α-independent translation be the Achilles heel of cancer? Front Oncol 5:264. doi:10.3389/fonc.2015.00264

    Article  PubMed  PubMed Central  Google Scholar 

  119. Tsai BP, Jimenez J, Lim S et al (2014) A novel Bcr-Abl-mTOR-eIF4A axis regulates IRES-mediated translation of LEF-1. Open Biol 4:140180. doi:10.1098/rsob.140180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Colussi TM, Costantino DA, Zhu J et al (2015) Initiation of translation in bacteria by a structured eukaryotic IRES RNA. Nature 519:110–113. doi:10.1038/nature14219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Costantino DA, Pfingsten JS, Rambo RP, Kieft JS (2008) tRNA–mRNA mimicry drives translation initiation from a viral IRES. Nat Struct Mol Biol 15:57–64. doi:10.1038/nsmb1351

    Article  CAS  PubMed  Google Scholar 

  122. Olejniczak M, Dale T, Fahlman RP, Uhlenbeck OC (2005) Idiosyncratic tuning of tRNAs to achieve uniform ribosome binding. Nat Struct Mol Biol 12:788–793. doi:10.1038/nsmb978

    Article  CAS  PubMed  Google Scholar 

  123. Noller HF, Hoang L, Fredrick K (2005) The 30S ribosomal P site: a function of 16S rRNA. FEBS Lett 579:855–858. doi:10.1016/j.febslet.2004.11.026

    Article  CAS  PubMed  Google Scholar 

  124. Gonzalez-Herrera IG, Prado-Lourenco L, Pileur F et al (2006) Testosterone regulates FGF-2 expression during testis maturation by an IRES-dependent translational mechanism. FASEB J Off Publ Fed Am Soc Exp Biol 20:476–478. doi:10.1096/fj.04-3314fje

    CAS  Google Scholar 

  125. Audigier S, Guiramand J, Prado-Lourenco L et al (2008) Potent activation of FGF-2 IRES-dependent mechanism of translation during brain development. RNA 14:1852–1864. doi:10.1261/rna.790608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Conte C, Ainaoui N, Delluc-Clavieres A et al (2009) Fibroblast growth factor 1 induced during myogenesis by a transcription-translation coupling mechanism. Nucleic Acids Res 37:5267–5278. doi:10.1093/nar/gkp550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cornelis S, Bruynooghe Y, Denecker G et al (2000) Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol Cell 5:597–605

    Article  CAS  PubMed  Google Scholar 

  128. Pyronnet S, Pradayrol L, Sonenberg N (2000) A cell cycle-dependent internal ribosome entry site. Mol Cell 5:607–616

    Article  CAS  PubMed  Google Scholar 

  129. Hsu K-S, Guan B-J, Cheng X et al (2016) Translational control of PML contributes to TNFα-induced apoptosis of MCF7 breast cancer cells and decreased angiogenesis in HUVECs. Cell Death Differ 23:469–483. doi:10.1038/cdd.2015.114

    Article  CAS  PubMed  Google Scholar 

  130. Marcel V, Ghayad SE, Belin S et al (2013) p53 Acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell 24:318–330. doi:10.1016/j.ccr.2013.08.013

    Article  CAS  PubMed  Google Scholar 

  131. Bornes S, Prado-Lourenco L, Bastide A et al (2007) Translational induction of VEGF internal ribosome entry site elements during the early response to ischemic stress. Circ Res 100:305–308. doi:10.1161/01.RES.0000258873.08041.c9

    Article  CAS  PubMed  Google Scholar 

  132. Ozretić P, Bisio A, Musani V et al (2015) Regulation of human PTCH1b expression by different 5′ untranslated region cis-regulatory elements. RNA Biol 12:290–304. doi:10.1080/15476286.2015.1008929

    Article  PubMed  PubMed Central  Google Scholar 

  133. Kress TR, Sabò A, Amati B (2015) MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer 15:593–607. doi:10.1038/nrc3984

    Article  CAS  PubMed  Google Scholar 

  134. Brocato J, Chervona Y, Costa M (2014) Molecular responses to hypoxia-inducible factor 1α and beyond. Mol Pharmacol 85:651–765. doi:10.1124/mol.113.089623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Nakayama K (2009) Cellular signal transduction of the hypoxia response. J Biochem 146:757–765. doi:10.1093/jb/mvp167

    Article  CAS  PubMed  Google Scholar 

  136. Masoud GN, Li W (2015) HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389. doi:10.1016/j.apsb.2015.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  137. Rohban S, Campaner S (2015) Myc induced replicative stress response: how to cope with it and exploit it. Biochim Biophys Acta 1849:517–524. doi:10.1016/j.bbagrm.2014.04.008

    Article  CAS  PubMed  Google Scholar 

  138. Ye AY, Liu Q-R, Li C-Y et al (2014) Human transporter database: comprehensive knowledge and discovery tools in the human transporter genes. PLoS One 9:e88883. doi:10.1371/journal.pone.0088883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Taub DD (2004) Cytokine, growth factor, and chemokine ligand database. Curr Protoc Immunol Chapter 6:Unit 6.29. doi:10.1002/0471142735.im0629s61

    PubMed  Google Scholar 

  140. Casimiro MC, Crosariol M, Loro E et al (2012) Cyclins and cell cycle control in cancer and disease. Genes Cancer 3:649–657. doi:10.1177/1947601913479022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Simon AE, Miller WA (2013) 3′ cap-independent translation enhancers of plant viruses. Annu Rev Microbiol 67:21–42. doi:10.1146/annurev-micro-092412-155609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rakotondrafara AM, Polacek C, Harris E, Miller WA (2006) Oscillating kissing stem-loop interactions mediate 5′ scanning-dependent translation by a viral 3′-cap-independent translation element. RNA 12:1893–1906. doi:10.1261/rna.115606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Blanco-Pérez M, Pérez-Cañamás M, Ruiz L, Hernández C (2016) Efficient translation of Pelargonium line pattern virus RNAs relies on a TED-like 3′-translational enhancer that communicates with the corresponding 5′-region through a long-distance RNA–RNA interaction. PLoS One 11:e0152593. doi:10.1371/journal.pone.0152593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Simon AE (2015) 3′UTRs of carmoviruses. Virus Res 206:27–36. doi:10.1016/j.virusres.2015.01.023

    Article  CAS  PubMed  Google Scholar 

  145. Fabian MR, White KA (2004) 5′-3′ RNA–RNA interaction facilitates cap- and poly(A) tail-independent translation of tomato bushy stunt virus mrna: a potential common mechanism for tombusviridae. J Biol Chem 279:28862–28872. doi:10.1074/jbc.M401272200

    Article  CAS  PubMed  Google Scholar 

  146. Roberts R, Zhang J, Mayberry LK et al (2015) A unique 5′ translation element discovered in Triticum Mosaic Virus. J Virol 89:12427–12440. doi:10.1128/JVI.02099-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Soengas MS, Alarcón RM, Yoshida H et al (1999) Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284:156–159

    Article  CAS  PubMed  Google Scholar 

  148. Soengas MS, Capodieci P, Polsky D et al (2001) Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409:207–211. doi:10.1038/35051606

    Article  CAS  PubMed  Google Scholar 

  149. Ungureanu NH, Cloutier M, Lewis SM et al (2006) Internal ribosome entry site-mediated translation of Apaf-1, but not XIAP, is regulated during UV-induced cell death. J Biol Chem 281:15155–15163. doi:10.1074/jbc.M511319200

    Article  CAS  PubMed  Google Scholar 

  150. Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206. doi:10.1038/nature11112

    Article  CAS  PubMed  Google Scholar 

  151. Meyer KD, Saletore Y, Zumbo P et al (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–1646. doi:10.1016/j.cell.2012.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang Y, Li Y, Toth JI et al (2014) N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 16:191–198. doi:10.1038/ncb2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang X, Lu Z, Gomez A et al (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–120. doi:10.1038/nature12730

    Article  PubMed  CAS  Google Scholar 

  154. Wang X, Zhao BS, Roundtree IA et al (2015) N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388–1399. doi:10.1016/j.cell.2015.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hernández G, Vázquez-Pianzola P, Sierra JM, Rivera-Pomar R (2004) Internal ribosome entry site drives cap-independent translation of reaper and heat shock protein 70 mRNAs in Drosophila embryos. RNA 10:1783–1797. doi:10.1261/rna.7154104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Rubtsova MP, Sizova DV, Dmitriev SE et al (2003) Distinctive properties of the 5′-untranslated region of human hsp70 mRNA. J Biol Chem 278:22350–22356. doi:10.1074/jbc.M303213200

    Article  CAS  PubMed  Google Scholar 

  157. Sun J, Conn CS, Han Y et al (2011) PI3K-mTORC1 attenuates stress response by inhibiting cap-independent Hsp70 translation. J Biol Chem 286:6791–6800. doi:10.1074/jbc.M110.172882

    Article  CAS  PubMed  Google Scholar 

  158. Bert AG, Grépin R, Vadas MA, Goodall GJ (2006) Assessing IRES activity in the HIF-1α and other cellular 5′ UTRs. RNA 12:1074–1083. doi:10.1261/rna.2320506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Delatte B, Wang F, Ngoc LV et al (2016) RNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 351:282–285. doi:10.1126/science.aac5253

    Article  CAS  PubMed  Google Scholar 

  160. Schwartz S, Mumbach MR, Jovanovic M et al (2014) Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep 8:284–296. doi:10.1016/j.celrep.2014.05.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zhang J, Addepalli B, Yun K-Y et al (2008) A polyadenylation factor subunit implicated in regulating oxidative signaling in Arabidopsis thaliana. PLoS One 3:e2410. doi:10.1371/journal.pone.0002410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Bruggeman Q, Garmier M, de Bont L et al (2014) The polyadenylation factor subunit cleavage and polyadenylation specificity factor 30: a key factor of programmed cell death and a regulator of immunity in Arabidopsis. Plant Physiol 165:732–746. doi:10.1104/pp.114.236083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chakrabarti M, Hunt A (2015) CPSF30 at the interface of alternative polyadenylation and cellular signaling in plants. Biomolecules 5:1151–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Burgess A, David R, Searle IR (2016) Deciphering the epitranscriptome: a green perspective. J Integr Plant Biol 58:822–835. doi:10.1111/jipb.12483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shi Z, Barna M (2015) Translating the genome in time and space: specialized ribosomes, RNA regulons, and RNA-binding proteins. Annu Rev Cell Dev Biol 31:31–54. doi:10.1146/annurev-cellbio-100814-125346

    Article  CAS  PubMed  Google Scholar 

  166. Pichon X, Wilson LA, Stoneley M et al (2012) RNA binding protein/RNA element interactions and the control of translation. Curr Protein Pept Sci 13:294–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Dvir S, Velten L, Sharon E et al (2013) Deciphering the rules by which 5′-UTR sequences affect protein expression in yeast. Proc Natl Acad Sci USA 110:E2792–E2801. doi:10.1073/pnas.1222534110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Xue S, Barna M (2015) Cis-regulatory RNA elements that regulate specialized ribosome activity. RNA Biol 12:1083–1087. doi:10.1080/15476286.2015.1085149

    Article  PubMed  PubMed Central  Google Scholar 

  169. Wang S-K, Wu Y, Ou T-M (2015) RNA G-quadruplex: the new potential targets for Ttherapy. Curr Top Med Chem 15:1947–1956

    Article  CAS  PubMed  Google Scholar 

  170. Bugaut A, Balasubramanian S (2012) 5′-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res 40:4727–4741. doi:10.1093/nar/gks068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Beaudoin J-D, Perreault J-P (2010) 5′-UTR G-quadruplex structures acting as translational repressors. Nucleic Acids Res 38:7022–7036. doi:10.1093/nar/gkq557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Balkwill GD, Derecka K, Garner TP et al (2009) Repression of translation of human estrogen receptor alpha by G-quadruplex formation. Biochemistry 48:11487–11495

    Article  CAS  PubMed  Google Scholar 

  173. Bonnal S (2003) A single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons. J Biol Chem 278:39330–39336. doi:10.1074/jbc.M305580200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Morris MMJ, Negishi Y, Pazsint C et al (2010) An RNA G-quadruplex is essential for cap-independent translation initiation in human VEGF IRES. J Am Chem Soc 132:17831–17839. doi:10.1021/ja106287x

    Article  CAS  PubMed  Google Scholar 

  175. Arcondéguy T, Lacazette E, Millevoi S et al (2013) VEGF-A mRNA processing, stability and translation: a paradigm for intricate regulation of gene expression at the post-transcriptional level. Nucleic Acids Res 41:7997–8010. doi:10.1093/nar/gkt539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Cammas A, Dubrac A, Morel B et al (2015) Stabilization of the G-quadruplex at the VEGF IRES represses cap-independent translation. RNA Biol 12:320–329. doi:10.1080/15476286.2015.1017236

    Article  PubMed  PubMed Central  Google Scholar 

  177. Gerlitz G, Jagus R, Elroy-Stein O (2002) Phosphorylation of initiation factor-2 alpha is required for activation of internal translation initiation during cell differentiation. Eur J Biochem 269:2810–2819

    Article  CAS  PubMed  Google Scholar 

  178. Takeda M (2004) A unique role of an amino terminal 16-residue region of long-type GATA-6. J Biochem 135:639–650. doi:10.1093/jb/mvh077

    Article  CAS  PubMed  Google Scholar 

  179. Yaman I, Fernandez J, Liu H et al (2003) The zipper model of translational control: a small upstream ORF is the switch that controls structural remodeling of an mRNA leader. Cell 113:519–531

    Article  CAS  PubMed  Google Scholar 

  180. Fernandez J, Yaman I, Huang C et al (2005) Ribosome stalling regulates IRES-mediated translation in eukaryotes, a parallel to prokaryotic attenuation. Mol Cell 17:405–416. doi:10.1016/j.molcel.2004.12.024

    Article  CAS  PubMed  Google Scholar 

  181. Chen T-M, Shih Y-H, Tseng JT et al (2014) Overexpression of FGF9 in colon cancer cells is mediated by hypoxia-induced translational activation. Nucleic Acids Res 42:2932–2944. doi:10.1093/nar/gkt1286

    Article  CAS  PubMed  Google Scholar 

  182. Fernandez J, Yaman I, Merrick WC et al (2002) Regulation of internal ribosome entry site-mediated translation by eukaryotic initiation factor-2alpha phosphorylation and translation of a small upstream open reading frame. J Biol Chem 277:2050–2058. doi:10.1074/jbc.M109199200

    Article  CAS  PubMed  Google Scholar 

  183. Kondrashov N, Pusic A, Stumpf CR et al (2011) Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell 145:383–397. doi:10.1016/j.cell.2011.03.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Xue S, Barna M (2012) Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol 13:355–369. doi:10.1038/nrm3359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Diederichs S, Bartsch L, Berkmann JC et al (2016) The dark matter of the cancer genome: aberrations in regulatory elements, untranslated regions, splice sites, non-coding RNA and synonymous mutations. EMBO Mol Med 8:442–457. doi:10.15252/emmm.201506055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Blais JD, Addison CL, Edge R et al (2006) Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol 26:9517–9532. doi:10.1128/MCB.01145-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Braunstein S, Karpisheva K, Pola C et al (2007) A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol Cell 28:501–512. doi:10.1016/j.molcel.2007.10.019

    Article  CAS  PubMed  Google Scholar 

  188. Gaccioli F, Huang CC, Wang C et al (2006) Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2alpha phosphorylation and cap-independent translation. J Biol Chem 281:17929–17940. doi:10.1074/jbc.M600341200

    Article  PubMed  CAS  Google Scholar 

  189. Lewis SM, Cerquozzi S, Graber TE et al (2007) The eIF4G homolog DAP5/p97 supports the translation of select mRNAs during endoplasmic reticulum stress. Nucleic Acids Res 36:168–178. doi:10.1093/nar/gkm1007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Stein I, Itin A, Einat P et al (1998) Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 18:3112–3119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lang KJ, Kappel A, Goodall GJ (2002) Hypoxia-inducible factor-1α mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell 13:1792–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Schepens B, Tinton SA, Bruynooghe Y et al (2005) The polypyrimidine tract-binding protein stimulates HIF-1alpha IRES-mediated translation during hypoxia. Nucleic Acids Res 33:6884–6894. doi:10.1093/nar/gki1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Conte C, Riant E, Toutain C et al (2008) FGF2 translationally induced by hypoxia is involved in negative and positive feedback loops with HIF-1alpha. PLoS ONE 3:e3078. doi:10.1371/journal.pone.0003078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Young RM, Wang S-J, Gordan JD et al (2008) Hypoxia-mediated selective mRNA translation by an internal ribosome entry site-independent mechanism. J Biol Chem 283:16309–16319. doi:10.1074/jbc.M710079200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Silvera D, Schneider RJ (2009) Inflammatory breast cancer cells are constitutively adapted to hypoxia. Cell Cycle 8:3091–3096

    Article  CAS  PubMed  Google Scholar 

  196. Silvera D, Arju R, Darvishian F et al (2009) Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nat Cell Biol 11:903–908. doi:10.1038/ncb1900

    Article  CAS  PubMed  Google Scholar 

  197. Vagner S, Gensac MC, Maret A et al (1995) Alternative translation of human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes. Mol Cell Biol 15:35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Martineau Y, Le Bec C, Monbrun L et al (2004) Internal ribosome entry site structural motifs conserved among mammalian fibroblast growth factor 1 alternatively spliced mRNAs. Mol Cell Biol 24:7622–7635. doi:10.1128/MCB.24.17.7622-7635.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kwabi-Addo B, Ozen M, Ittmann M (2004) The role of fibroblast growth factors and their receptors in prostate cancer. Endocr Relat Cancer 11:709–724. doi:10.1677/erc.1.00535

    Article  CAS  PubMed  Google Scholar 

  200. Lien I-C, Horng L-Y, Hsu P-L et al (2014) Internal ribosome entry site of bFGF is the target of thalidomide for IMiDs development in multiple myeloma. Genes Cancer 5:127–141

    PubMed  PubMed Central  Google Scholar 

  201. Huang Y, Jin C, Hamana T et al (2015) Overexpression of FGF9 in prostate epithelial cells augments reactive stroma formation and promotes prostate cancer progression. Int J Biol Sci 11:948–960. doi:10.7150/ijbs.12468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Yeh SH, Bin Yang W, Gean PW et al (2011) Translational and transcriptional control of Sp1 against ischaemia through a hydrogen peroxide-activated internal ribosomal entry site pathway. Nucleic Acids Res 39:5412–5423. doi:10.1093/nar/gkr161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hung C-Y, Yang W-B, Wang S-A et al (2014) Nucleolin enhances internal ribosomal entry site (IRES)-mediated translation of Sp1 in tumorigenesis. Biochim Biophys Acta Mol Cell Res 1843:2843–2854. doi:10.1016/j.bbamcr.2014.08.009

    Article  CAS  Google Scholar 

  204. Bisio A, Latorre E, Andreotti V et al (2015) The 5′-untranslated region of p16INK4a melanoma tumor suppressor acts as a cellular IRES, controlling mRNA translation under hypoxia through YBX1 binding. Oncotarget 6:39980–39994. doi:10.18632/oncotarget.5387

    PubMed  PubMed Central  Google Scholar 

  205. Hundsdoerfer P, Thoma C, Hentze MW (2005) Eukaryotic translation initiation factor 4GI and p97 promote cellular internal ribosome entry sequence-driven translation. Proc Natl Acad Sci USA 102:13421–13426. doi:10.1073/pnas.0506536102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Fernandez J, Yaman I, Mishra R et al (2001) Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability. J Biol Chem 276:12285–12291. doi:10.1074/jbc.M009714200

    Article  CAS  PubMed  Google Scholar 

  207. Fernandez J, Bode B, Koromilas A et al (2002) Translation mediated by the internal ribosome entry site of the cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner. J Biol Chem 277:11780–11787. doi:10.1074/jbc.M110778200

    Article  CAS  PubMed  Google Scholar 

  208. Majumder M, Yaman I, Gaccioli F et al (2009) The hnRNA-binding proteins hnRNP L and PTB are required for efficient translation of the Cat-1 arginine/lysine transporter mRNA during amino acid starvation. Mol Cell Biol 29:2899–2912. doi:10.1128/MCB.01774-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Lu Y, Wang W, Wang J et al (2013) Overexpression of arginine transporter CAT-1 is associated with accumulation of l-arginine and cell growth in human colorectal cancer tissue. PLoS One 8:e73866. doi:10.1371/journal.pone.0073866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Damiano F, Alemanno S, Gnoni GV, Siculella L (2010) Translational control of the sterol-regulatory transcription factor SREBP-1 mRNA in response to serum starvation or ER stress is mediated by an internal ribosome entry site. Biochem J 429:603–612. doi:10.1042/BJ20091827

    Article  CAS  PubMed  Google Scholar 

  211. Damiano F, Rochira A, Tocci R et al (2013) hnRNP A1 mediates the activation of the IRES-dependent SREBP-1a mRNA translation in response to endoplasmic reticulum stress. Biochem J 449:543–553. doi:10.1042/BJ20120906

    Article  CAS  PubMed  Google Scholar 

  212. Li W, Tai Y, Zhou J et al (2012) Repression of endometrial tumor growth by targeting SREBP1 and lipogenesis. Cell Cycle 11:2348–2358. doi:10.4161/cc.20811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Liu T, Zhang H, Xiong J et al (2015) Inhibition of MDM2 homodimerization by XIAP IRES stabilizes MDM2, influencing cancer cell survival. Mol Cancer 14:65. doi:10.1186/s12943-015-0334-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Holcik M, Lefebvre C, Yeh C et al (1999) A new internal-ribosome-entry-site motif potentiates XIAP-mediated cytoprotection. Nat Cell Biol 1:190–192. doi:10.1038/11109

    Article  CAS  PubMed  Google Scholar 

  215. Holcik M, Yeh C, Korneluk RG, Chow T (2000) Translational upregulation of X-linked inhibitor of apoptosis (XIAP) increases resistance to radiation induced cell death. Oncogene 19:4174–4177. doi:10.1038/sj.onc.1203765

    Article  CAS  PubMed  Google Scholar 

  216. Fu Q, Chen Z, Gong X et al (2015) β-Catenin expression is regulated by an IRES-dependent mechanism and stimulated by paclitaxel in human ovarian cancer cells. Biochem Biophys Res Commun 461:21–27. doi:10.1016/j.bbrc.2015.03.161

    Article  CAS  PubMed  Google Scholar 

  217. Townsend PA, Dublin E, Hart IR et al (2002) BAG-i expression in human breast cancer: interrelationship between BAG-1 RNA, protein, HSC70 expression and clinico-pathological data. J Pathol 197:51–59. doi:10.1002/path.1081

    Article  CAS  PubMed  Google Scholar 

  218. Ott G, Rosenwald A, Campo E (2013) Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Blood 122:3884–9381. doi:10.1182/blood-2013-05-498329

    Article  CAS  PubMed  Google Scholar 

  219. Subkhankulova T, Mitchell SA, Willis AE (2001) Internal ribosome entry segment-mediated initiation of c-Myc protein synthesis following genotoxic stress. Biochem J 359:183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Yang X, Hao Y, Ferenczy A et al (1999) Overexpression of anti-apoptotic gene BAG-1 in human cervical cancer. Exp Cell Res 247:200–207. doi:10.1006/excr.1998.4349

    Article  CAS  PubMed  Google Scholar 

  221. Sherrill KW, Byrd MP, Van Eden ME, Lloyd RE (2004) BCL-2 translation is mediated via internal ribosome entry during cell stress. J Biol Chem 279:29066–29074. doi:10.1074/jbc.M402727200

    Article  CAS  PubMed  Google Scholar 

  222. Van Eden ME, Byrd MP, Sherrill KW, Lloyd RE (2004) Translation of cellular inhibitor of apoptosis protein 1 (c-IAP1) mRNA is IRES mediated and regulated during cell stress. RNA 10:469–481

    Article  PubMed  CAS  Google Scholar 

  223. Faye MD, Beug ST, Graber TE et al (2015) IGF2BP1 controls cell death and drug resistance in rhabdomyosarcomas by regulating translation of cIAP1. Oncogene 34:1532–1541. doi:10.1038/onc.2014.90

    Article  CAS  PubMed  Google Scholar 

  224. Vanasse GJ, Winn RK, Rodov S et al (2004) Bcl-2 overexpression leads to increases in suppressor of cytokine signaling-3 expression in B cells and de novo follicular lymphoma. Mol Cancer Res 2:620–631

    CAS  PubMed  Google Scholar 

  225. Ray PS, Grover R, Das S (2006) Two internal ribosome entry sites mediate the translation of p53 isoforms. EMBO Rep 7:404–410. doi:10.1038/sj.embor.7400623

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Grover R, Ray PS, Das S (2008) Polypyrimidine tract binding protein regulates IRES-mediated translation of p53 isoforms. Cell Cycle 7:2189–2198

    Article  CAS  PubMed  Google Scholar 

  227. Khan D, Sharathchandra A, Ponnuswamy A et al (2013) Effect of a natural mutation in the 5′ untranslated region on the translational control of p53 mRNA. Oncogene 32:4148–4159. doi:10.1038/onc.2012.422

    Article  CAS  PubMed  Google Scholar 

  228. Malbert-Colas L, Ponnuswamy A, Olivares-Illana V et al (2014) HDMX folds the nascent p53 mRNA following activation by the ATM kinase. Mol Cell 54:500–511. doi:10.1016/j.molcel.2014.02.035

    Article  CAS  PubMed  Google Scholar 

  229. Sharathchandra A, Lal R, Khan D, Das S (2012) Annexin A2 and PSF proteins interact with p53 IRES and regulate translation of p53 mRNA. RNA Biol 9:1429–1439. doi:10.4161/rna.22707

    Article  CAS  PubMed  Google Scholar 

  230. Weingarten-Gabbay S, Khan D, Liberman N et al (2014) The translation initiation factor DAP5 promotes IRES-driven translation of p53 mRNA. Oncogene 33:611–618. doi:10.1038/onc.2012.626

    Article  CAS  PubMed  Google Scholar 

  231. Halaby M-J, Harris BRE, Miskimins WK et al (2015) Deregulation of IRES-mediated p53 translation in cancer cells with defective p53 response to DNA damage. Mol Cell Biol 35:4006–4017. doi:10.1128/MCB.00365-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Halaby M-J, Li Y, Harris BR et al (2015) Translational control protein 80 stimulates IRES-mediated translation of p53 mRNA in response to DNA damage. Biomed Res Int 2015:708158. doi:10.1155/2015/708158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Candeias MM, Hagiwara M, Matsuda M (2016) Cancer-specific mutations in p53 induce the translation of Δ160p53 promoting tumorigenesis. EMBO Rep 17:1542–1551. doi:10.15252/embr.201541956

    Article  CAS  PubMed  Google Scholar 

  234. Li W, Thakor N, Xu EY et al (2010) An internal ribosomal entry site mediates redox-sensitive translation of Nrf2. Nucleic Acids Res 38:778–788. doi:10.1093/nar/gkp1048

    Article  PubMed  CAS  Google Scholar 

  235. Shay KP, Michels AJ, Li W et al (2012) Cap-independent Nrf2 translation is part of a lipoic acid-stimulated detoxification stress response. Biochim Biophys Acta 1823:1102–1109. doi:10.1016/j.bbamcr.2012.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Zhang J, Dinh TN, Kappeler K et al (2012) La autoantigen mediates oxidant induced de novo Nrf2 protein translation. Mol Cell Proteomics 11(M111):015032. doi:10.1074/mcp.M111.015032

    PubMed  Google Scholar 

  237. Saw CLL, Kong A-NT (2011) Nuclear factor-erythroid 2-related factor 2 as a chemopreventive target in colorectal cancer. Expert Opin Ther Targets 15:281–295. doi:10.1517/14728222.2011.553602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Wang X, Zhao Y, Xiao Z et al (2009) Alternative translation of OCT4 by an internal ribosome entry site and its novel function in stress response. Stem Cells 27:1265–1275. doi:10.1002/stem.58

    Article  CAS  PubMed  Google Scholar 

  239. Xiao Z-S, Simpson LG, Quarles LD (2003) IRES-dependent translational control of Cbfa1/Runx2 expression. J Cell Biochem 88:493–505. doi:10.1002/jcb.10375

    Article  CAS  PubMed  Google Scholar 

  240. Lucero CMJ, Vega OA, Osorio MM et al (2013) The cancer-related transcription factor Runx2 modulates cell proliferation in human osteosarcoma cell lines. J Cell Physiol 228:714–723. doi:10.1002/jcp.24218

    Article  CAS  PubMed  Google Scholar 

  241. Serrano M, Lin AW, McCurrach ME et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    Article  CAS  PubMed  Google Scholar 

  242. Bellodi C, Kopmar N, Ruggero D (2010) Deregulation of oncogene-induced senescence and p53 translational control in X-linked dyskeratosis congenita. EMBO J 29:1865–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Montanaro L, Calienni M, Bertoni S et al (2010) Novel dyskerin-mediated mechanism of p53 inactivation through defective mRNA translation. Cancer Res 70:4767–4777. doi:10.1158/0008-5472.CAN-09-4024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Fundação para a Ciência e a Tecnologia (UID/MULTI/04046/2013 to BioISI from FCT/MCTES/PIDDAC). Rafaela Lacerda and Juliane Menezes were supported by fellowships from Fundação para a Ciência e a Tecnologia (SFRH/BD/74778/2010 and SFRH/BPD/98360/2013, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luísa Romão.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacerda, R., Menezes, J. & Romão, L. More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cell. Mol. Life Sci. 74, 1659–1680 (2017). https://doi.org/10.1007/s00018-016-2428-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2428-2

Keywords

Navigation