Skip to main content

Anthosphere Microbiome and Their Associated Interactions at the Aromatic Interface

  • Chapter
  • First Online:
Plant Microbe Interface

Abstract

The American quote “snug as a bug in a rug” (which means very comfortable and everyone has their own tastes) fits perfectly for the relation between plant and microbes with their associated interactions. Microbes interact at anthosphere, caulosphere, carposphere, phyllophane, rhizosphere, and spermosphere regions of the plants, and the plant-microbe interface acts as a medium of communication between these two diversified living systems. The interface is influenced by an extensive variety of biotic and abiotic determinants responsible for shaping plant-associated habitats, considerably modifying the active composition of the microbial communities, which alter themselves according to the environment for beneficial interactions. The microbiome of root and leaf interactions is most studied as evident from the availability of humongous literature; however, even a small microhabitat such as the anthosphere has its own group of associated microbes obtained from autochthonous or allochthonous. In addition, these microhabitats are contiguous with mutualistic pollinators, florivores, and nectar robbers, which alter the dynamic microbial inhabitants of these aromatic interfaces. To attain sustainability in plant conservation, food, and agriculture, an in-depth understanding of the entire plant-microbe environment is crucial. This chapter was written to provide an overview of the different interfaces, in particular, the anthosphere region of the phyllosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam ZR, Fahrenbach AC, Kacar B, Aono M (2018) Prebiotic geochemical automata at the intersection of radiolytic chemistry, physical complexity, and systems biology. Complexity 2018:1. https://doi.org/10.1155/2018/9376183

    Article  Google Scholar 

  • Aizenberg-Gershtein Y, Izhaki I, Halpern M (2013) Do honeybees shape the bacterial community composition in floral nectar? PLoS One 8(7):e67556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aleklett K, Hart M, Shade A (2014) The microbial ecology of flowers: an emerging frontier in phyllosphere research. Botany 92(4):253–266

    Article  Google Scholar 

  • Álvarez-Pérez S, Herrera CM (2013) Composition, richness and nonrandom assembly of culturable bacterial–microfungal communities in floral nectar of Mediterranean plants. FEMS Microbiol Ecol 83(3):685–699

    Article  PubMed  CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32(6):666–681

    Article  CAS  PubMed  Google Scholar 

  • Barret M, Briand M, Bonneau S, Préveaux A, Valière S, Bouchez O, Jacques MA (2015) Emergence shapes the structure of the seed microbiota. Appl Environ Microbiol 81(4):1257–1266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bartlewicz J, Lievens B, Honnay O, Jacquemyn H (2016) Microbial diversity in the floral nectar of Linaria vulgaris along an urbanization gradient. BMC Ecol 16(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  • Basim E, Basim H, Özcan M (2006) Antibacterial activities of Turkish pollen and propolis extracts against plant bacterial pathogens. J Food Eng 77(4):992–996

    Article  Google Scholar 

  • Belisle M, Peay KG, Fukami T (2012) Flowers as islands: spatial distribution of nectar-inhabiting microfungi among plants of Mimulus aurantiacus, a hummingbird-pollinated shrub. Microb Ecol 63(4):711–718

    Article  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    Article  CAS  PubMed  Google Scholar 

  • Bringel F, Couée I (2015) Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microbiol 6:486

    Article  PubMed  PubMed Central  Google Scholar 

  • Brysch-Herzberg M (2004) Ecology of yeasts in plant–bumblebee mutualism in Central Europe. FEMS Microbiol Ecol 50(2):87–100

    Article  CAS  PubMed  Google Scholar 

  • Bumroongsook S (2018) Abiotic and biotic factors affecting the occurrence of thrips on lotus flowers. Appl Ecol Environ Res 16(3):2827–2836

    Article  Google Scholar 

  • Chohan S, Perveen R, Abid M, Naqvi AH, Naz S (2017) Management of seed borne fungal diseases of tomato: a review. Pak J Phytopathol 29(1):193–200

    Article  Google Scholar 

  • de Vega C, Herrera CM (2013) Microorganisms transported by ants induce changes in floral nectar composition of an ant-pollinated plant. Am J Bot 100(4):792–800

    Article  PubMed  CAS  Google Scholar 

  • El-Gawad HA, Ibrahim MFM, El-Hafez AA, El-Yazied AA (2015) Contribution of pink pigmented facultative methylotrophic bacteria in promoting antioxidant enzymes, growth and yield of snap bean. Synthesis 2:4

    Google Scholar 

  • Felestrino ÉB, Santiago IF, Freitas LDS, Rosa LH, Ribeiro SP, Moreira LM (2017) Plant growth promoting bacteria associated with Langsdorffia hypogaea-rhizosphere-host biological interface: a neglected model of bacterial prospection. Front Microbiol 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Field B, Jordán F, Osbourn A (2006) First encounters–deployment of defence-related natural products by plants. New Phytol 172(2):193–207

    Article  CAS  PubMed  Google Scholar 

  • Frank AC, Saldierna Guzmán JP, Shay JE (2017) Transmission of bacterial endophytes. Microorganisms 5(4):70

    Article  PubMed Central  CAS  Google Scholar 

  • Fridman S, Izhaki I, Gerchman Y, Halpern M (2012) Bacterial communities in floral nectar. Environ Microbiol Rep 4(1):97–104

    Article  PubMed  Google Scholar 

  • Fürnkranz M, Lukesch B, Müller H, Huss H, Grube M, Berg G (2012) Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb Ecol 63(2):418–428

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Jin YJ, Li HD, Chen HJ (2005) Volatile organic compounds and their roles in bacteriostasis in five conifer species. J Integr Plant Biol 47(4):499–507

    Article  CAS  Google Scholar 

  • Garcia J, Kao-Kniffin J (2018) Microbial group dynamics in plant rhizospheres and their implications on nutrient cycling. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.01516

  • Gianfreda L (2015) Enzymes of importance to rhizosphere processes. J Soil Sci Plant Nutr 15(2):283–306

    CAS  Google Scholar 

  • Golonka AM, Vilgalys R (2013) Nectar inhabiting yeasts in Virginian populations of Silene latifolia (Caryophyllaceae) and coflowering species. Am Midl Nat 169:235–258

    Article  Google Scholar 

  • Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P (2017) Interplay between innate immunity and the plant microbiota. Annu Rev Phytopathol 55:565–589

    Article  CAS  PubMed  Google Scholar 

  • Herrera CM, de Vega C, Canto A, Pozo MI (2009) Yeasts in floral nectar: a quantitative survey. Ann Bot 103(9):1415–1423

    Article  PubMed  PubMed Central  Google Scholar 

  • Heuer H, Smalla K (2012) Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol Rev 36(6):1083–1104

    Article  CAS  PubMed  Google Scholar 

  • Heydenreich B, Bellinghausen I, König B, Becker WM, Grabbe S, Petersen A, Saloga J (2012) Gram-positive bacteria on grass pollen exhibit adjuvant activity inducing inflammatory T cell responses. Clin Exp Allergy 42(1):76–84

    Article  CAS  PubMed  Google Scholar 

  • Huisman R, Bouwmeester K, Brattinga M, Govers F, Bisseling T, Limpens E (2015) Haustorium formation in Medicago truncatula roots infected by Phytophthora palmivora does not involve the common endosymbiotic program shared by arbuscular mycorrhizal fungi and rhizobia. Mol Plant-Microbe Interact 28(12):1271–1280

    Article  CAS  PubMed  Google Scholar 

  • Jacquemyn H, Lenaerts M, Brys R, Willems K, Honnay O, Lievens B (2013) Among-population variation in microbial community structure in the floral nectar of the bee-pollinated forest herb Pulmonaria officinalis L. PLoS One 8(3):e56917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junker RR, Tholl D (2013) Volatile organic compound mediated interactions at the plant-microbe interface. J Chem Ecol 39(7):810–825

    Article  CAS  PubMed  Google Scholar 

  • Junker RR, Loewel C, Gross R, Dötterl S, Keller A, Blüthgen N (2011) Composition of epiphytic bacterial communities differs on petals and leaves. Plant Biol 13(6):918–924

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Minamisawa K, Isawa T, Nakatsukasa HIROKI, Mitsui H, Kawaharada YASU, Shimizu Y (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17(1):37–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci U S A 111(38):13715–13720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler D, Baldwin IT (2007) Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors of Nicotiana attenuata. Plant J 49(5):840–854

    Article  CAS  PubMed  Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6(7):1378

    Article  CAS  PubMed  Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72(1):1

    Article  Google Scholar 

  • Kumar DSS, Hyde KD (2004) Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal Divers 17:69–90

    CAS  Google Scholar 

  • Lemanceau P, Barret M, Mazurier S, Mondy S, Pivato B, Fort T, Vacher C (2017) Plant communication with associated microbiota in the spermosphere, rhizosphere and phyllosphere. In: Advances in botanical research, vol 82. Academic, Cambridge, MA, pp 101–133

    Google Scholar 

  • Lenaerts M, Álvarez-Pérez S, De Vega C, Van Assche A, Johnson SD, Willems KA, Lievens B (2014) Rosenbergiella australoborealis sp. nov., Rosenbergiella collisarenosi sp. nov. and Rosenbergiella epipactidis sp. nov., three novel bacterial species isolated from floral nectar. Syst Appl Microbiol 37(6):402–411

    Article  CAS  PubMed  Google Scholar 

  • Maignien L, DeForce EA, Chafee ME, Eren AM, Simmons SL (2014) Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. MBio 5(1):e00682–e00613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maruthachalam K, Klosterman SJ, Anchieta A, Mou B, Subbarao KV (2013) Colonization of spinach by Verticillium dahliae and effects of pathogen localization on the efficacy of seed treatments. Phytopathology 103(3):268–280

    Article  CAS  PubMed  Google Scholar 

  • Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9(3):274–280

    Article  CAS  PubMed  Google Scholar 

  • Menzler-Hokkanen I, Hokkanen HM (2017) Entomovectoring: an agroecological practice of using bees for biocontrol. Agroecol Pract Sustain Agric Princ Appl Mak Transit. https://doi.org/10.1142/9781786343062_0007

    Chapter  Google Scholar 

  • Mittelbach M, Yurkov AM, Nocentini D, Nepi M, Weigend M, Begerow D (2015) Nectar sugars and bird visitation define a floral niche for basidiomycetous yeast on the Canary Islands. BMC Ecol 15(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mommer L, Hinsinger P, Prigent-Combaret C, Visser EJ (2016) Advances in the rhizosphere: stretching the interface of life. Plant Soil 407(1–2):1–8. https://doi.org/10.1007/s11104-016-3040-9

    Article  CAS  Google Scholar 

  • Mwajita MR, Murage H, Tani A, Kahangi EM (2013) Evaluation of rhizosphere, rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters. SpringerPlus 2(1):606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42:271–309

    Article  CAS  PubMed  Google Scholar 

  • Newman MA, Sundelin T, Nielsen JT, Erbs G (2013) MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci 4:139

    Article  PubMed  PubMed Central  Google Scholar 

  • Pellegrin C, Morin E, Martin FM, Veneault-Fourrey C (2015) Comparative analysis of secretomes from ectomycorrhizal fungi with an emphasis on small-secreted proteins. Front Microbiol 6:1278

    Article  PubMed  PubMed Central  Google Scholar 

  • Pozo MI, Lachance MA, Herrera CM (2012) Nectar yeasts of two southern Spanish plants: the roles of immigration and physiological traits in community assembly. FEMS Microbiol Ecol 80(2):281–293

    Article  CAS  PubMed  Google Scholar 

  • Pozo MI, Herrera CM, Alonso C (2014) Spatial and temporal distribution patterns of nectar-inhabiting yeasts: how different floral microenvironments arise in winter-blooming Helleborus foetidus. Fungal Ecol 11:173–180

    Article  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Switzerland, pp 247–260

    Chapter  Google Scholar 

  • Reisberg EE, Hildebrandt U, Riederer M, Hentschel U (2012) Phyllosphere bacterial communities of trichome-bearing and trichomeless Arabidopsis thaliana leaves. Antonie Van Leeuwenhoek 101(3):551–560

    Article  PubMed  Google Scholar 

  • Remus-Emsermann MN, Schlechter RO (2018) Phyllosphere microbiology: at the interface between microbial individuals and the plant host. New Phytologist 218(4):1327–1333

    Article  PubMed  Google Scholar 

  • Rering CC, Beck JJ, Hall GW, McCartney MM, Vannette RL (2017) Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator. New Phytol 220(3):750–759

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez MA, Venedikian N, Godeas A (2001) Fungal populations on sunflower (Helianthus annuus) anthosphere and their relation to susceptibility or tolerance to Sclerotinia sclerotiorum attack. Mycopathologia 150(3):143

    Article  PubMed  Google Scholar 

  • Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4(10):1340

    Article  PubMed  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Int J Life Sci Med Res 21(1):30

    Google Scholar 

  • Samuni-Blank M, Izhaki I, Laviad S, Bar-Massada A, Gerchman Y, Halpern M (2014) The role of abiotic environmental conditions and herbivory in shaping bacterial community composition in floral nectar. PLoS One 9(6):e99107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santoyo G, Pacheco CH, Salmerón JH, León RH (2017) The role of abiotic factors modulating the plant-microbe-soil interactions: toward sustainable agriculture. A review. Span J Agric Res 15(1):13

    Article  Google Scholar 

  • Schaeffer RN, Irwin RE (2014) Yeasts in nectar enhance male fitness in a montane perennial herb. Ecology 95(7):1792–1798

    Article  PubMed  Google Scholar 

  • Schiltz S, Gaillard I, Pawlicki-Jullian N, Thiombiano B, Mesnard F, Gontier E (2015) A review: what is the spermosphere and how can it be studied? J Appl Microbiol 119(6):1467–1481

    Article  CAS  PubMed  Google Scholar 

  • Shade A, McManus PS, Handelsman J (2013) Unexpected diversity during community succession in the apple flower microbiome. MBio 4(2):e00602–e00612

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrivastava S, Prasad R, Varma A (2014) Anatomy of root from eyes of a microbiologist. In: Morte A, Varma A (eds) Root engineering, vol 40. Springer, Berlin, pp 3–22

    Chapter  Google Scholar 

  • Simon HM, Smith KP, Dodsworth JA, Guenthner B, Handelsman J, Goodman RM (2001) Influence of tomato genotype on growth of inoculated and indigenous bacteria in the spermosphere. Appl Environ Microbiol 67(2):514–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh D, Mathur SB (2004) Location of fungal hyphae in seeds. In: Histopathology of seed-borne infections. CRC Press, Boca Raton, FL, pp 101–168

    Chapter  Google Scholar 

  • Tian Y, Zhao Y, Wu X, Liu F, Hu B, Walcott RR (2015) The type VI protein secretion system contributes to biofilm formation and seed-to-seedling transmission of Acidovorax citrulli on melon. Mol Plant Pathol 16(1):38–47

    Article  CAS  PubMed  Google Scholar 

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7(1):40–50

    Article  Google Scholar 

  • Ushio M, Yamasaki E, Takasu H, Nagano AJ, Fujinaga S, Honjo MN, Kudoh H (2015) Microbial communities on flower surfaces act as signatures of pollinator visitation. Sci Rep 5:8695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vannette RL, Gauthier MPL, Fukami T (2013) Nectar bacteria, but not yeast, weaken a plant–pollinator mutualism. Proc R Soc Lond B Biol Sci 280(1752):20122601

    Article  Google Scholar 

  • Vega Y, Marques I (2015) Both biotic and abiotic factors influence floral longevity in three species of Epidendrum (Orchidaceae). Plant Species Biol 30(3):184–192

    Article  Google Scholar 

  • Violante A, Caporale AG (2015) Biogeochemical processes at soil-root interface. J Soil Sci Plant Nutr 15(2):422–448

    CAS  Google Scholar 

  • Whipps J, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105(6):1744–1755

    Article  CAS  PubMed  Google Scholar 

  • Wiens F, Zitzmann A, Lachance MA, Yegles M, Pragst F, Wurst FM, Spanagel R (2008) Chronic intake of fermented floral nectar by wild treeshrews. Proc Natl Acad Sci U S A 105(30):10426–10431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams TR, Marco ML (2014) Phyllosphere microbiota composition and microbial community transplantation on lettuce plants grown indoors. MBio 5(4):e01564–e01514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siva Sundara Kumar Durairajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arunkumar, N., Rakesh, S., Rajaram, K., Kumar, N.R., Durairajan, S.S.K. (2019). Anthosphere Microbiome and Their Associated Interactions at the Aromatic Interface. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Microbe Interface. Springer, Cham. https://doi.org/10.1007/978-3-030-19831-2_14

Download citation

Publish with us

Policies and ethics