Skip to main content

Spatial Quantum Game Simulation

  • Chapter
  • First Online:
Quantum Game Simulation

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 36))

  • 567 Accesses

Abstract

This chapter deals with collective games in which the players are arranged in a spatially structured two-dimensional lattice as explained in Sect. 3.1. Sections 3.2 and 3.3 deal with two-parameter and three-parameter strategy simulations respectively. A variant of the canonical EWL model is considered in Sect. 3.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the five simulations of Fig. 3.6 at \(\gamma =0\) it is: \((\overline{\theta }_A,\overline{\theta }_B)= (1.568,1.710), (0.741,2.068), (1.239,2.256), (1.240 1.906), (1.606,2.086)\), with associated mean-field payoffs: \((p^*_A,p^*_B)=(0.147,1.503), (0.006,2.414), (-0.238,1.928), (0.113,1.878)\), \((-0.125,1.456)\), very close to the actual payoffs: \((\overline{p}_A,\overline{p}_B)=(0.149,1.502)\), \((-0.054,2.201), (-0.130,1.813), (0.027,1.798), (-0.087,1.456)\), shown in the left frame of the figure.

  2. 2.

    The reference [14] is also relevant at this respect, but the occasional reader should be warned about the variation of the \(\alpha \) and \(\beta \) parameters in the \([-\pi ,\pi ]\) interval instead of in \([0,\pi /2]\), as proposed for \(\alpha \) in the seminal EWL paper.

  3. 3.

    \((\hat{U}_{\!A}\otimes \hat{U}_{\!B})\vert \psi _i\rangle = \left( \begin{matrix} 0 &{} 0 &{} 0 &{} e^{i\pi /2}=i \\ 0 &{} 0 &{} -1 &{} 0 \\ 0 &{} -1 &{} 0 &{} 0 \\ e^{-i\pi /2}=-i &{} 0 &{} 0 &{} 0 \end{matrix}\right) \left( {\begin{matrix}\cos \frac{\gamma }{2}\\ 0\\ 0\\ i\sin \frac{\gamma }{2}\\ \end{matrix}}\right) \!=\! \left( {\begin{matrix} -\sin \frac{\gamma }{2}\\ 0\\ 0\\ -i\cos \frac{\gamma }{2} \end{matrix}}\right) \), \(\vert \psi _f\rangle \!=\!\) \( \left( \begin{matrix} \cos \frac{\gamma }{2}&{}0&{}0 &{} -i\sin \frac{\gamma }{2}\\ 0&{}\cos \frac{\gamma }{2}&{} i\sin \frac{\gamma }{2}&{}0\\ 0&{}i\sin \frac{\gamma }{2}&{}\cos \frac{\gamma }{2}&{}0\\ -i\sin \frac{\gamma }{2}&{}0&{}0&{}\cos \frac{\gamma }{2} \end{matrix}\right) \left( \begin{matrix} -\sin \frac{\gamma }{2}\\ 0\\ 0\\ -i\cos \frac{\gamma }{2} \end{matrix}\right) = \left( \begin{matrix} -\cos \frac{\gamma }{2}\sin \frac{\gamma }{2} -\sin \frac{\gamma }{2}\cos \frac{\gamma }{2}\\ 0\\ 0\\ i\sin ^2\frac{\gamma }{2}-i\cos ^2\frac{\gamma }{2} \end{matrix}\right) = \left( \begin{matrix} -\sin \gamma \\ 0\\ 0\\ -i\cos \gamma \end{matrix}\right) \).

  4. 4.

    \(\vert \psi _f\rangle = J^\dag i\left( {\begin{matrix} i\sin (\gamma /2)\\ 0\\ 0\\ -\cos (\gamma /2)\\ \end{matrix}}\right) =i\left( \begin{matrix} i\cos (\gamma /2)\sin (\gamma /2)+i\sin (\gamma /2)\cos (\gamma /2)\\ 0\\ 0\\ \sin ^2(\gamma /2) - \cos ^2(\gamma /2) \end{matrix} \right) \).

References

  1. Schiff, J.L.: Cellular Automata: A Discrete View of the World. Wiley (2008)

    Google Scholar 

  2. Miszczak, J.A., Pawela, L., Sladkowski, J.: General model for an entanglement-enhanced composed quantum game on a two-dimensional lattice. Fluct. Noise Lett. 13(2), 1450012 (2014)

    Article  Google Scholar 

  3. Li, Q., Iqbal, A., Perc, M., Chen, M., Abbott, D.: Coevolution of quantum and classical strategies on evolving random networks. PloS One 8(7), e68423 (2013)

    Article  Google Scholar 

  4. Li, Q., Iqbal, A., Chen, M., Abbott, D.: Evolution of quantum and classical strategies on networks by group interactions. New J. Phys. 14(10), 103034 (2012)

    Article  MathSciNet  Google Scholar 

  5. Li, Q., Iqbal, A., Chen, M., Abbott, D.: Quantum strategies win in a defector-dominated population. Phys. A 391, 3316–3322 (2012)

    Article  Google Scholar 

  6. Li, A., Yong, X.: Entanglement guarantees emergence of cooperation in quantum prisoner’s dilemma games on networks. Sci. Rep. 4, 6286 (2014)

    Google Scholar 

  7. Wiesner, K.: Quantum cellular automata. In: Encyclopedia of Complexity and Systems Science, pp. 7154–7164 (2009). http://arxiv.org/0808.0679

    Chapter  Google Scholar 

  8. Ellison, G.: Learning, local interaction, and coordination. Phys. Rev. Lett. 68–5, 1047–1071 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Adamatzky, A., Martiez, G.J., Mora, J.C.S.T.: Phenomenology of reaction-diffusion binary-state cellular automata. Int. J. Bifurc. Chaos 16(10), 2985–3005 (2006)

    Article  MathSciNet  Google Scholar 

  10. Nowak, M.A., May, R.A.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)

    Article  Google Scholar 

  11. Nowak, M.A., May, R., M.: The spatial dilemmas of evolution. Int. J. Bifurc. Chaos 3(11), 35–78 (1993)

    Article  MathSciNet  Google Scholar 

  12. Axelrod, R.: The Evolution of Cooperation, Revised edn. Basic Books (2008)

    Google Scholar 

  13. Du, J.F., Li, H., Xu, X.D., Zhou, X., Han, R.: Phase-transition-like behaviour of quantum games. J. Phys. A Math. Gen. 36(23), 6551–6562 (2003)

    Article  MathSciNet  Google Scholar 

  14. Flitney, A.P., Hollengerg, L.C.L.: Nash equilibria in quantum games with generalized two-parameter strategies. Phys. Lett. A 363, 381–388 (2007)

    Article  MathSciNet  Google Scholar 

  15. Alonso-Sanz, R.: On a three-parameter quantum battle of the sexes cellular automaton. Quantum Inf. Process. 12(5), 1835–1850 (2013)

    Article  MathSciNet  Google Scholar 

  16. Alonso-Sanz, R.: The spatialized, continuous-valued battle of the sexes. Dyn. Games Appl. 2(2), 177–194 (2012)

    Article  MathSciNet  Google Scholar 

  17. Alonso-Sanz, R.: Self-organization in the battle of the sexes. Int. J. Mod. Phys. C 22(1), 1–11 (2011)

    Article  MathSciNet  Google Scholar 

  18. Alonso-Sanz, R.: Self-organization in the spatial battle of the sexes with probabilistic updating. Phys. A 390, 2956–2967 (2011)

    Article  Google Scholar 

  19. Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291–303 (2000)

    Article  MathSciNet  Google Scholar 

  20. Ozdemir, S.K., Shimamura, J., Morikoshi, F., Imoto, N.: Dynamics of a discoordination game with classical and quantum correlations. Phys. Lett. A 333, 218–231 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Alonso-Sanz .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alonso-Sanz, R. (2019). Spatial Quantum Game Simulation. In: Quantum Game Simulation. Emergence, Complexity and Computation, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-19634-9_3

Download citation

Publish with us

Policies and ethics