Skip to main content

Quantum Cellular Automata

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Quantum cellular automata (QCA) area generalization of (classical) cellular automata (CA) and in particular of reversible CA. The latter arereviewed shortly. An overview is given over early attempts by various authors to define one-dimensionalQCA. These turned out to have serious shortcomings which are discussed as well. Various proposals subsequently putforward by a number of authors for a general definition of one- and higher-dimensional QCA arereviewed and their properties such as universality and reversibility are discussed.

Quantum cellular automata (QCA) are a quantization of classicalcellular automata (CA),d-dimensional arrays of cells with a finite-dimensional statespace and a local, spatially-homogeneous, discrete-time update rule. For QCA each cell isa finite-dimensional quantum system and the update rule is unitary. CA as well as some versions of QCAhave been shown to be computationally universal ....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    For details on these and other aspects of quantumcomputation see the article by Kendon in this Encyclopedia.

Abbreviations

Configuration:

The state of all cells at a given point in time.

Neighborhood:

All cells with respect to a given cell that can affect this cell's state at the next time step. A neighborhood always contains a finite number of cells.

Space-homogeneous:

The transition function / update table is the same for each cell.

Time-homogeneous:

The transition function / update table is time-independent.

Update table:

Takes the current state of a cell and its neighborhood as an argument and returns the cell's state at the next time step.

Schrödinger picture:

Time evolution is represented by a quantum state evolving in time according to a time-independent unitary operator acting on it.

Heisenberg picture:

Time evolution is represented by observables (elements of an operator algebra) evolving in time according to a unitary operator acting on them.

BQP complexity class:

Bounded error, quantum probabilistic, the class of decision problems solvable by a quantum computer in polynomial time with an error probability of at most 1/3.

QMA complexity class:

Quantum Merlin–Arthur, the class of decision problems such that a “yes” answer can be verified by a 1-message quantum interactive proof (verifiable in BQP).

Quantum Turing machine:

A  quantum version of a Turing machine – an abstract computational model able to compute any computable sequence.

Swap operation:

The one-qubit unitary gate \( { U = \small\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} } \)

Hadamard gate:

The one-qubit unitary gate

$$ U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} $$
Phase gate:

The one-qubit unitary gate \( { U = \begin{pmatrix} 1 & 0 \\ 0 & \text{e}^{i\phi} \end{pmatrix} } \)

Pauli operator:

The three Pauli operators are

$$ \sigma_x = \small\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\:,\enskip \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}\:,\enskip \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} $$
Qubit:

2-state quantum system, representable asvector \( { a \mathinner{|{0}\rangle} + b\mathinner{|{1}\rangle} } \) in complex space with \( { a^2 + b^2 = 1 } \).

Bibliography

Primary Literature

  1. Aoun B, Tarifi M (2004) Introduction to quantum cellular automata. http://arxiv.org/abs/quant-ph/0401123

  2. Arrighi P (2006) Algebraic characterizations of unitary linear quantum cellular automata. In: Mathematical Foundations of Computer Science 2006. Lecture Notes in Computer Science, vol 4162. Springer, Berlin, pp 122–133

    Google Scholar 

  3. Arrighi P, Fargetton R (2007) Intrinsically universal one-dimensional quantum cellular automata. 0704.3961. http://arxiv.org/abs/0704.3961

  4. Arrighi P, Nesme V, Werner R (2007) One-dimensional quantum cellular automata over finite, unbounded configurations. 0711.3517v1. http://arxiv.org/abs/0711.3517

  5. Arrighi P, Nesme V, Werner R (2007) N-dimensional quantum cellular automata. 0711.3975v1. http://arxiv.org/abs/arXiv:0711.3975

  6. Benioff P (1980) The computer as a physical system: A microscopic quantum mechanical hamiltonian model of computers as represented by turing machines. J Stat Phys 22:563–591

    MathSciNet  ADS  Google Scholar 

  7. Benjamin SC (2000) Schemes for parallel quantum computation without local control of qubits. Phys Rev A 61:020301–4

    ADS  Google Scholar 

  8. Benjamin SC (2001) Quantum computing without local control of qubit-qubit interactions. Phys Rev Lett 88(1):017904

    MathSciNet  ADS  Google Scholar 

  9. Benjamin SC, Bose S (2004) Quantum computing in arrays coupled by “always-on” interactions. Phys Rev A 70:032314

    ADS  Google Scholar 

  10. Bialynicki-Birula I (1994) Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata. Phys Rev D 49:6920

    Google Scholar 

  11. Bloch I (2005) Ultracold quantum gases in optical lattices. Nature Phys 1:23–30

    ADS  Google Scholar 

  12. Boghosian BM, Taylor W (1998) Quantum lattice-gas model for the many-particle Schrödinger equation in d dimensions. Phys Rev E 57:54

    MathSciNet  ADS  Google Scholar 

  13. Boghosian BM, Taylor W (1998) Simulating quantum mechanics on a quantum computer. Physica D: Nonlinear Phenomena 120:30–42

    MathSciNet  ADS  MATH  Google Scholar 

  14. Brennen GK, Williams JE (2003) Entanglement dynamics in one-dimensional quantum cellular automata. Phys Rev A 68:042311

    MathSciNet  ADS  Google Scholar 

  15. Cook M (2004) Universality in elementary cellular automata. Complex Syst 15:1

    MATH  Google Scholar 

  16. van Dam W (1996) Quantum cellular automata. Master's thesis, University of Nijmegen

    Google Scholar 

  17. Dürr C, Santha M (2002) A decision procedure for unitary linear quantum cellular automata. SIAM J Comput 31:1076–1089

    Google Scholar 

  18. Dürr C, LêThanh H, Santha M (1997) A decision procedure for well-formed linear quantum cellular automata. Random Struct Algorithms 11:381–394

    Google Scholar 

  19. Feynman R (1982) Simulating physics with computers. Int J Theor Phys 21:467–488

    MathSciNet  Google Scholar 

  20. Fussy S, Grössing G, Schwabl H, Scrinzi A (1993) Nonlocal computation in quantum cellular automata. Phys Rev A 48:3470

    Google Scholar 

  21. Grössing G, Zeilinger A (1988) Quantum cellular automata. Complex Syst 2:197–208

    Google Scholar 

  22. Gruska J (1999) Quantum Computing. Osborne/McGraw-Hill. QCA are treated in Section 4.3

    Google Scholar 

  23. Kempe J (2003) Quantum random walks: an introductory overview. Contemp Phys 44:307

    ADS  Google Scholar 

  24. Lloyd S (1993) A potentially realizable quantum computer. Science 261:1569–1571

    ADS  Google Scholar 

  25. Love P, Boghosian B (2005) From Dirac to diffusion: Decoherence in quantum lattice gases. Quantum Inf Process 4:335–354

    MATH  Google Scholar 

  26. Margolus N (1991) Parallel quantum computation. In: Zurek WH (ed) Complexity, Entropy, and the Physics of Information, Santa Fe Institute Series. Addison Wesley, Redwood City, pp 273–288

    Google Scholar 

  27. Meyer DA (1996) From quantum cellular automata to quantum lattice gases. J Stat Phys 85:551–574

    ADS  MATH  Google Scholar 

  28. Meyer DA (1996) On the absence of homogeneous scalar unitary cellular automata. Phys Lett A 223:337–340

    MathSciNet  ADS  MATH  Google Scholar 

  29. Meyer DA (1997) Quantum mechanics of lattice gas automata: One-particle plane waves and potentials. Phys Rev E 55:5261

    ADS  Google Scholar 

  30. Meyer DA (2002) Quantum computing classical physics. Philos Trans Royal Soc A 360:395–405

    ADS  MATH  Google Scholar 

  31. Nagaj D, Wocjan P (2008) Hamiltonian quantum cellular automata in 1d. 0802.0886. http://arxiv.org/abs/0802.0886

  32. Ortiz G, Gubernatis JE, Knill E, Laflamme R (2001) Quantum algorithms for fermionic simulations. Phys Rev A 64:022319

    ADS  Google Scholar 

  33. Perez-Delgado CA, Cheung D (2005) Models of quantum cellular automata. http://arxiv.org/abs/quant-ph/0508164

  34. Perez-Delgado CA, Cheung D (2007) Local unitary quantum cellular automata. Phys Rev A (Atomic, Molecular, and Optical Physics) 76:032320–15

    Google Scholar 

  35. Raussendorf R (2005) Quantum cellular automaton for universal quantum computation. Phys Rev A (Atomic, Molecular, and Optical Physics) 72:022301–4

    MathSciNet  ADS  Google Scholar 

  36. Richter W (1996) Ergodicity of quantum cellular automata. J Stat Phys 82:963–998

    ADS  MATH  Google Scholar 

  37. Schumacher B, Werner RF (2004) Reversible quantum cellular automata. quant-ph/0405174. http://arxiv.org/abs/quant-ph/0405174

  38. Shepherd DJ, Franz T, Werner RF (2006) Universally programmable quantum cellular automaton. Phys Rev Lett 97:020502–4

    ADS  Google Scholar 

  39. Succi S, Benzi R (1993) Lattice Boltzmann equation for quantum mechanics. Physica D: Nonlinear Phenomena 69:327–332

    MathSciNet  ADS  MATH  Google Scholar 

  40. Toffoli T, Margolus NH (1990) Invertible cellular automata: A review. Physica D: Nonlinear Phenomena 45:229–253

    MathSciNet  ADS  MATH  Google Scholar 

  41. Tóth G, Lent CS (2001) Quantum computing with quantum-dot cellular automata. Phys Rev A 63:052315

    Google Scholar 

  42. Twamley J (2003) Quantum-cellular-automata quantum computing with endohedral fullerenes. Phys Rev A 67:052318

    ADS  Google Scholar 

  43. Vidal G (2004) Efficient simulation of one-dimensional quantum many-body systems. Phys Rev Lett 93(4):040502

    ADS  Google Scholar 

  44. Vollbrecht KGH, Cirac JI (2008) Quantum simulators, continuous-time automata, and translationally invariant systems. Phys Rev Lett 100:010501

    ADS  Google Scholar 

  45. von Neumann J (1966) Theory of Self-Reproducing Automata. University of Illinois Press, Champaign

    Google Scholar 

  46. Watrous J (1995) On one-dimensional quantum cellular automata. In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science, Milwaukee, pp 528–537

    Google Scholar 

  47. Werner R Private communication

    Google Scholar 

  48. Wolfram S (1983) Statistical mechanics of cellular automata. Rev Mod Phys 55:601

    MathSciNet  ADS  MATH  Google Scholar 

  49. Wootters WK, Zurek WH (1982) A single quantum cannot be cloned. Nature299:802–803

    ADS  Google Scholar 

Books and Reviews

  1. Summaries of the topic of QCA can be found in chapter 4.3 of Gruska [21], and in Refs. [1,32].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Wiesner, K. (2009). Quantum Cellular Automata. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_426

Download citation

Publish with us

Policies and ethics