Skip to main content

Organic Fertilizer from Algae: A Novel Approach Towards Sustainable Agriculture

  • Chapter
  • First Online:
Biofertilizers for Sustainable Agriculture and Environment

Part of the book series: Soil Biology ((SOILBIOL,volume 55))

Abstract

To meet the global demand for food requirement, today’s farmer is using synthetic fertilizers and pesticides enormously. Although such supplements have helped many developing countries to increase the crop yield, simultaneously it has also raised many issues. The use of synthetic fertilizers has not only increased the cost of food production, but also there is decrease of soil fertility and degradation of local ecosystem due to increase in pollutants in soil, water and air. Therefore, there is a need to look for such alternatives which not only can help in combating the pollution problem but can also be used to increase the crop production. The organic fertilizers or the biofertilizers are one of the alternatives, which are eco-friendly, cost-effective and enhance the soil quality without degrading the ecosystem. Amongst various available fertilizers, the organic fertilizers from algae are considered as a potential alternative to mainstream synthetic fertilizers, as these are rich in macronutrients, micronutrients, some growth regulators, etc. which directly help in improvement of growth and yield of crop plants. In the present chapter, various aspects and potentiality of both microalgae and macroalgae as organic fertilizer have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Uchiyama M, Sato R (1972) Isolation and identification of native auxins in marine algae. Agric Biol Chem Tokyo 36:2259–2260

    Article  CAS  Google Scholar 

  • Abetz P, Young CL (1983) The effect of seaweed extract sprays derived from Ascophyllum nodosum on lettuce and cauliflower crops. Bot Mar 26:487–492

    Article  Google Scholar 

  • Aitken JB, Senn TL (1965) Seaweed products as a fertilizer and soil conditioner for horticultural crops. Bot Mar 8(1):144–147

    Article  CAS  Google Scholar 

  • Ali N, Farrell A, Ramsubhag A, Jayaraman J (2016) The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato grown under tropical conditions. J Appl Phycol 28:1353–1362

    Article  Google Scholar 

  • Arthur GD, Stirk WA, van Staden J (2003) Effect of a seaweed concentrate on the growth and yield of three varieties of Capsicum annuum. S Afr J Bot 69:207–211

    Article  Google Scholar 

  • Atzmon N, van Staden J (1994) The effect of seaweed concentrate on the growth of Pinus pinea seedlings. New For 8:279–288

    Article  Google Scholar 

  • Bhosle NB, Untawale AG, Dhargalkar VK (1975) Effects of seaweed extract on the growth of Phaseolus vulgaris L. Ind J Mar Sci 4:208–210

    Google Scholar 

  • Biddington NL, Dearman AS (1983) The involvement of the root apex and cytokinins in the control of lateral root emergence in lettuce seedlings. Plant Growth Reg 1:183–193

    CAS  Google Scholar 

  • Blunden G (1991) Agricultural uses of seaweeds and seaweed extracts. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe: uses and potential. Wiley, Chichester, pp 65–81

    Google Scholar 

  • Blunden G, Cripps AL, Gordon SM, Mason TG, Turner CH (1986) The characterization and quantitative estimation of betaines in commercial seaweed extracts. Bot Mar 29:155–160

    Article  CAS  Google Scholar 

  • Burchett S, Fuller MP, Jellings AJ (1998) Application of seaweed extract improves winter hardiness of winter barley Hordeum vulgare cv Igri. The society for experimental biology, annual meeting, the York University, 22–27 March 1998. Experimental biology online, Springer. ISSN: 1430-34-8

    Google Scholar 

  • Cardozo KHM, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Physiol Toxicol Pharmacol 146:60–78

    Article  Google Scholar 

  • Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393

    Article  CAS  Google Scholar 

  • Crouch IJ, van Staden J (1993) Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Reg 13:21–29

    Article  CAS  Google Scholar 

  • Crouch IJ, Beckett RP, van Staden J (1990) Effect of seaweeds concentrate on the growth and mineral nutrition of nutrient-stressed lettuce. J Appl Phycol 2:269–272

    Article  Google Scholar 

  • Crouch IJ, Smith MT, van Staden J, Lewis MJ, Hoad GV (1992) Identification of auxins in a commercial seaweed concentrate. J Plant Physiol 139:590–594

    Article  CAS  Google Scholar 

  • Datta SN (2011) Culture of Azolla and its efficacy in diet of Labeo rohita. Aquaculture 310(3–4):376–379

    Article  Google Scholar 

  • Deepali (2017) Blue green algae. In: Khosla R (ed) Biofertilizers and biocontrol agents for organic farming. Kojo Press, New Delhi, pp 28–40

    Google Scholar 

  • Duarte IJ, Hernández SHA, Ibañez AL, Canto AR (2018) Macroalgae as soil conditioners or growth promoters of Pisum sativum (L). Ann Res Rev Biol 27:1–8

    Article  Google Scholar 

  • Eyras MC, Rostagno CM, Defosse GE (1998) Biological evaluation of seaweed composting. Comp Sci Util 6:74–81

    Article  Google Scholar 

  • Featonby-Smith BC, van Staden J (1987) Effects of seaweed concentrate on grain yield in barley. S Afr J Bot 53:125–128

    Article  Google Scholar 

  • Fletcher RA, Kallidumbil V, Steele P (1982) An improved bioassay for cytokinins using cucumber cotyledons. Plant Physiol 69:675–677

    Article  CAS  Google Scholar 

  • Hankins SD, Hockey HP (1990) The effect of a liquid seaweed extract from Ascophyllum nodosum (Fucales, Phaeophyta) on the two spotted red spider mite Tetranychus urticae. Hydrobiologia 204(205):555–559

    Article  Google Scholar 

  • Henson BJ, Watson LE, Barnum SR (2004) The evolutionary history of nitrogen fixation, as assessed by nif. D. J Mol Evol 58:390–399

    Article  CAS  Google Scholar 

  • Hernández-Herrera RM, Santacruz-Ruvalcaba F, Ruiz-López MA, Norrie J, Hernández-Carmona G (2014) Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J Appl Phycol 26:619–628

    Article  Google Scholar 

  • Hill DJ (1975) The pattern of development of Anabaena in the Azolla–Anabaena symbiosis. Planta 122:179–184

    Article  CAS  Google Scholar 

  • Hu C, Liu Y, Song L, Zhang D (2002) Effect of desert soil algae on the stabilization of fine sands. J Appl Phycol 14:281–292

    Article  CAS  Google Scholar 

  • Hu C, Liu Y, Paulsen BS, Petersen D, Klaveness D (2003) Extracellular carbohydrate polymers from five desert soil algae with different cohesion in the stabilization of fine sand grain. Carbohydr Polym 54:33–42

    Article  CAS  Google Scholar 

  • Inubushi K, Watanabe I (1986) Dynamics of available nitrogen in paddy soils. II. Mineralized N of chloroform-fumigated soil as a nutrient source for rice. Soil Sci Plant Nutr 32:561–577

    Article  CAS  Google Scholar 

  • Ishii T, Aikawa J, Kirino S, Kitabayashi H, Matsumoto I, Kadoya K (2000) Effects of alginate oligosaccharide and polyamines on hyphal growth of vesicular-arbuscular mycorrhizal fungi and their infectivity of citrus roots. In: Proceedings of the 9th international society of citriculture congress, Orlando, FL, 3–7 December 2000, pp 1030–1032

    Google Scholar 

  • Khan MMA, Gautam C, Mohammad F, Siddiqui MH, Naeem M, Khan MN (2006) Effect of gibberellic acid spray on performance of tomato. Turk J Biol 30:11–16

    CAS  Google Scholar 

  • Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Reg 28:386–399

    Article  CAS  Google Scholar 

  • Kumar G (2008) Effects of seaweed extract on growth and development of wheat. M.Phil. thesis, University of Delhi, New Delhi, pp 1–154

    Google Scholar 

  • Kumar G, Bawaja P (2018) Biofertilizer: a tool for sustainable agriculture in chainging environment. In: Ansari MW, Kumar S, Kaula BC, Wattal RK (eds) Introduction to challenges and strategies to improve crop productivity in changing environment. R.K. Enriched Public Pvt. Ltd, Dwarka, pp 83–92

    Google Scholar 

  • Kumar G, Sahoo D (2011) Effect of seaweed liquid extract on growth and yield of Triticum aestivum var. Pusa Gold. J Appl Phycol 23:251–255

    Article  Google Scholar 

  • Kumar S, Sahoo D (2017) A comprehensive analysis of alginate content and biochemical composition of leftover pulp from brown seaweed Sargassum wightii. Algal Res 23:233–239

    Article  Google Scholar 

  • Kumar G, Baweja P, Sahoo D (2012) Seaweeds: a potential source of biofertilizer. In: Sahoo DB, Kaushik BD (eds) Algal biotechnology and environment. I.K. International, New Delhi, pp 43–52

    Google Scholar 

  • Kuwada K, Wamocho LS, Utamura M, Matsushita I, Ishii T (2006) Effect of red and green algal extracts on hyphal growth of arbuscular fungi, and on mycorrhizal development and growth of papaya and passion fruit. Agron J 98:1340–1344

    Article  Google Scholar 

  • Lee RW (2008) Phycology, 4th edn. Cambridge University Press, Cambridge, 547 pp

    Book  Google Scholar 

  • Li SH, Ley SH (1992) Nitrogen-fixing blue—green algae. In: Hong GF (ed) The nitrogen fixation and its research in China. Springer, Berlin. https://doi.org/10.1007/978-3-662-10385-2_26

    Chapter  Google Scholar 

  • MalamIssa O, Trichet J, Defarge C, Coute A, Valentine C (1999) Morphology and microstructure of micro biotic soil crusts on a tiger bush sequence (Niger, Sahel). Catena 37:175–196

    Article  Google Scholar 

  • MalamIssa O, Bissonnais YL, Defarge C, Trichet J (2001) Role of a microbial cover on structural stability of a sandy soil in Sahelian part of western Niger. Geoderma 101:15–30

    Article  Google Scholar 

  • Mancuso S, Azzarello E, Mugnai S, Briand X (2006) Marine bioactive substances (IPA extract) improve ion fluxes and water stress tolerance in potted Vitis vinifera plants. Adv Hortic Sci 20:156–161

    Google Scholar 

  • Mathur C, Rai S, Sase N, Krish S, Jayasri MA (2015) Enteromorpha intestinalis derived seaweed liquid fertilizers as prospective biostimulant for Glycine max. Braz Arch Biol Technol 58:813–820

    Article  CAS  Google Scholar 

  • Mishra S, Kaushik BD (1989a) Growth promoting substances of cyanobacteria. I. Vitamins and their influence on rice plant. Proc Ind Natl Sci Acad B 55:295–300

    Google Scholar 

  • Mishra S, Kaushik BD (1989b) Growth promoting substances of cyanobacteria. II. Detection of amino acids, sugars and auxins. Proc Ind Natl Sci Acad B 55:295–300

    Google Scholar 

  • Mooney PA, van Staden J (1986) Algae and cytokinins. J Plant Physiol 123:1–21

    Article  CAS  Google Scholar 

  • Moore KK (2004) Using seaweed compost to grow bedding plants. Biocycle 45:43–44

    Google Scholar 

  • Murugaiyan K, Narasimman S, Anatharaman P (2012) Proximate composition of marine macro algae from Seeniappa Dharka, Gulf of Mannar region, Tamil Nadu. Int J Res Mar Sci 1:1–3

    Google Scholar 

  • Nobles DR, Romanovicz DK, Brown RM (2001) Cellulose in cyanobacteria. Origin of plant cellulose synthase? Plant Physiol 127:529–542

    Article  CAS  Google Scholar 

  • Norrie J, Keathley JP (2006) Benefits of Ascophyllum nodosum marine-plant extract applications to ‘Thompson seedless’ grape production. Proc Xth Int Symp Pl Bioreg fruit prod 2005. Acta Hortic 727:243–247

    Article  CAS  Google Scholar 

  • Pabbi S (2015) Blue green algae: a potential biofertilizer for rice. In: Sahoo DB, Seckbach J (eds) The algae world, Cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, pp 449–465. https://doi.org/10.1007/978-94-017-7321-8

    Chapter  Google Scholar 

  • Pabbi S, Dhar DW (2008) Blue green algae and Azolla bio fertilizers: a training manual. Centre for conservation and utilization of blue green algae. IARI, New Delhi

    Google Scholar 

  • Pandey KD, Shukla PN, Giri DD, Kashyap AK (2005) Cyanobacteria in alkaline soil and the effect of cyanobacteria inoculation with pyrite amendments on their reclamation. Biol Fert Soils 41:451–457

    Article  Google Scholar 

  • Pillai PK, Premalatha S, Rajamony S (2002) Azolla–a sustainable feed substitute for livestock. LEISA INDIA, pp 15–17. Accessed 27 Nov 2018

    Google Scholar 

  • Pise NM, Sabale AB (2010) Effect of seaweed concentrates on the growth and biochemical constituents of Trigonella foenum-graecum L. J Phytol 2:50–56

    Google Scholar 

  • Rathore SS, Chaudhary DR, Boricha GN, Ghosh A, Bhatt BP, Zodape ST, Patolia JS (2009) Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. S Afr J Bot 75:351–355

    Article  CAS  Google Scholar 

  • Rioux LE, Turgeon SL, Beaulieu M (2007) Characterization of polysaccharides extracted from brown seaweeds. Carb Polym 69:530–537

    Article  CAS  Google Scholar 

  • Roger PA, Kulasooriya SA (1980) Blue-green algae and rice. IRRI, Las Banos, Laguna, p 112

    Google Scholar 

  • Sahoo D (2000) Farming the ocean: seaweeds cultivation and utilization. Aravali Publication Corporation, New Delhi, pp 12–44

    Google Scholar 

  • Sahu D, Priyadarshini I, Rath B (2012) Cyanobacteria – as potential biofertilizers. CIBTech J Microbiol 1(2–3):20–26. ISSN: 2319-3867

    Google Scholar 

  • Sasikumar K, Govindan T, Anuradha C (2011) Effect of seaweed liquid fertilizer of Dictyota dichotoma on growth and yield of Abelmoschus esculentus L. Eur J Exp Biol 1:223–227

    Google Scholar 

  • Sharma HSS, Fleming C, Selby C, Rao JR, Martin T (2014) Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol 26:465–490

    Article  CAS  Google Scholar 

  • Singh PK, Bisoyi RN (1989) Blue-green algae in rice fields. Phykos 28(1&2):181–195

    Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7(529):1–19

    CAS  Google Scholar 

  • Sivasankari S, Chandrasekaran M, Kannathasan K, Venkatesalu V (2006) Effect of seaweed extract on growth and yield of cowpea. Seaweed Res Utiln 28:145–150

    Google Scholar 

  • Slàvik M (2005) Production of Norway spruce (Picea abies) seedlings on substrate mixes using growth stimulants. J For Sci 51:15–23

    Article  Google Scholar 

  • Sridhar S, Rengasamy R (2002) Effect of seaweed liquid fertilizer obtained from Ulva lactuca on the biomass, pigments and protein content of Spirulina platensis. Seaweed Res Utiln 24:145–149

    Google Scholar 

  • Stirk WA, van Staden J (1997) Comparision of cytokinin and auxin-like activity in some commercially used seaweed extracts. J Appl Phycol 8:503–508

    Article  Google Scholar 

  • Stirk WA, Tarkowská D, Turečová V, Strnad M, van Staden J (2014) Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. J Appl Phycol 26:561–567

    Article  CAS  Google Scholar 

  • Tay SAB, MacLead JK, Palni LMS, Letham DS (1985) Detection of cytokinins in seaweeds extract. Phytochemistry 24:2611–2614

    Article  CAS  Google Scholar 

  • Temple WD, Bomke AA (1988) Effects of kelp (Macrocystis integrifolia) on soil chemical properties and crop response. Plant Soil 105:213–222

    Article  CAS  Google Scholar 

  • Temple WD, Bomke AA (1989) Effects of kelp (Macrocystis integrifolia and Ecklonia maxima) foliar application on bean crop growth. Plant Soil 117:85–92

    Article  Google Scholar 

  • Temple WD, Bomke AA (1990) The short-term effects of fresh kelp (Macrocystis integrifolia) on physical properties of a fine-textured soil. Plant Soil 125:293–295

    Article  Google Scholar 

  • Thirumaran G, Arumugam M, Arumugam R, Anantharaman P (2009) Effect of seaweed liquid fertilizer on growth and pigment concentration of Abelmoschus esculentus (l) medikus. Am-Eur J Ag 2(2):57–66

    Google Scholar 

  • Uthirapandi V, Suriya S, Boomibalagan P, Eswaran S, Ramya SS, Vijayanand N, Kathiresan D (2018) Bio-fertilizer potential of seaweed liquid extracts of marine macro algae on growth and biochemical parameters of Ocimum sanctum. J Pharm Phytochem 7:3528–3532

    CAS  Google Scholar 

  • Venkataraman GS, Neelakantan S (1967) Effect of cellular constituents of nitrogen fixing blue-green alga Cylindrospermum muscicola on the root growth of rice seedlings. J Gen Appl Microbiol 13:53–61

    Article  CAS  Google Scholar 

  • Vernieri P, Borghesi E, Ferrante A, Magnani G (2005) Application of biostimulants in floating system for improving rocket quality. J Food Agric Environ 3:86–88

    Google Scholar 

  • Watanabe A (1973) On the inoculation of paddy field s in the pacific area with nitrogen fixing blue green algae. Soil Biol Biochem 5:161–162

    Article  Google Scholar 

  • Watanabe I, Lee KK, Alimagno BV, Sato M, Del Rosario DC, De Guzman MR (1977) Biological nitrogen fixation in paddy field studies by in situ acetylene-reduction assays. IRRI Res Paper Ser 3:1–16

    CAS  Google Scholar 

  • Williams DC, Brain KR, Blunden G, Wildgoose PB, Jewers K (1981) Plant growth regulatory substances in commercial seaweed extracts. Proc Int Seaweed Symp 8:760–763

    Google Scholar 

  • Yandigeri MS, Kashyap S, Pabbi S (2011) Studies on mineral phosphate solubilization by cyanobacteria Westiellopsis and Anabaena. Microbiology 80(4):558–565

    Article  CAS  Google Scholar 

  • Zaccaro MC, Kato A, Zulpa G, Storni MM, Steyerthal N, Lobasso K, Stella MA (2006) Bioactivity of Scytonema hofmanni (cyanobacteria) in Lilium alexandrae in vitro propagation. Electron J Biotechnol 9(3):210–214

    Article  CAS  Google Scholar 

  • Zhang W, Yamane H, Chapman DJ (1993) The phyto-hormone profile of the red alga Porphyra perforata. Bot Mar 36:257–266

    Article  CAS  Google Scholar 

  • Zodape ST (2001) Seaweeds as a biofertilizer. J Sci Ind Res 60:378–382

    Google Scholar 

  • Zutshi S, Fatima T (2015) Cyanobacteria. In: Sahoo DB, Seckbach J (eds) The algae world, Cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, pp 57–89

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Principal Maitreyi College, Zakir Husain Delhi College, and PGDAV College, University of Delhi, to provide all the necessary facilities to compile this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baweja, P., Kumar, S., Kumar, G. (2019). Organic Fertilizer from Algae: A Novel Approach Towards Sustainable Agriculture. In: Giri, B., Prasad, R., Wu, QS., Varma, A. (eds) Biofertilizers for Sustainable Agriculture and Environment . Soil Biology, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-030-18933-4_16

Download citation

Publish with us

Policies and ethics