Skip to main content

Scientific Progress and Its Impact on Wind

  • Chapter
  • First Online:
Wind Science and Engineering

Part of the book series: Springer Tracts in Civil Engineering ((SPRTRCIENG))

  • 1686 Accesses

Abstract

This chapter deals with fluid dynamics, probability theory and automatic computation. Just in the first half of the twentieth century they displayed major improvements, both in general terms and as regards the basic tools for the knowledge of wind that would come to maturity in the second half of the twentieth century. After almost two centuries of trials, fluid dynamics overcame the doubts about D’Alembert’s paradox and the resistance of bodies, formulating the founding principles of the boundary layer, of the vortex wake, and of the transition from laminar to turbulent flows. The probability theory, reorganised on axiomatic grounds, produced a broad range of developments including extreme value theory, principal component analysis, random processes and Monte Carlo methods. The appearance of the electronic computer gave rise to advances firstly addressed to meteorological forecasts, then aimed to solve the increasingly complex problems posed by the renewed culture of the wind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reynolds ’ experiments proved that the transition from laminar to turbulent regime took place in a circular pipe for a R value nearly equal to 2300. In view of the current knowledge, the flow is laminar for R ≤ 2000 and is turbulent for R ≥ 4000. The 2000 ≤ R ≤ 4000 range is defined as the transition domain.

  2. 2.

    Reviewing Boussinesq’s contribution (Sect. 3.6) in the light of Reynolds ’ results, it amounts to expressing Eq. (5.7) in the form:

    $$ \overline{T}_{ij} = - \overline{p}\updelta_{ij} +\upmu_\text{T} \left( {\frac{{\partial \overline{v}_{i} }}{{\partial x_{j} }} + \frac{{\partial \overline{v}_{j} }}{{\partial x_{i} }}} \right)\quad \left( {i,j = 1,2,3} \right) $$

    where μT is the eddy viscosity coefficient. Reynolds ’ demonstration, therefore, expressed in a mathematical form the concept introduced by Boussinesq in physical and phenomenological terms: the μT parameter is strongly dependent on the turbulent agitation of the flow.

  3. 3.

    In his 1894 book, Progress in flying machines, Octave Chanute (Sect. 7.4) wrote: “Science has been awaiting the great physicist, who, like Galilei or Newton, should bring order out of chaos in aerodynamics, and reduce its many anomalies to the rule of harmonious law”. Chanute died in 1910, without making the acquaintance with Prandtl .

  4. 4.

    In 1928, when he was questioned by Goldstein about the succinctness of his famous paper, Prandtl replied that he had no more than 10 min available for the presentation and then he did not believe necessary to write more than what he would have told.

  5. 5.

    In his work presented in 1904 and published in 1905 [9], Prandtl used the “boundary layer” (“Grenzschicht”) term only once; he often resorted, instead, to the “transition layer” (“Übergangsschicht”) term. The “boundary layer” term was extensively used by Blasius in his 1907 doctorate thesis. In 1925 Prandtl judged such term unsatisfactory but resigned himself to its use considering its diffusion.

  6. 6.

    Communication of Prof. Masaru Matsumoto, University of Kyoto, Japan.

  7. 7.

    In his 1908 paper [16] Bénard was the first to call the S quantity in Eq. (5.1) Strouhal number.

  8. 8.

    In the fifth edition of Lamb’s book, Hydrodynamics [3], published in 1924, there was a brief paragraph about the boundary layer, with the following words dedicated to Prandtl : “The calculations are necessarily elaborate, but the results (…) are interesting”. In the sixth edition, published in 1932, a whole chapter was dedicated to the boundary layer, including the equations of motion.

  9. 9.

    Before Karman, other authors obtained expressions of the “velocity-defect law” on empirical and experimental bases. Among them, it is worth noting to cite Henry Philibert Gaspard Darcy (1803–1858) (Recherches expérimentales relatives au mouvement de l’eau dans les tuyaux, 1857) and his assistant, Henry Emile Bazin (1829–1917) (Recherches hydrauliques, 1865).

  10. 10.

    The fact that the exponent of the power law defined by Eq. (5.22) decreases as the Reynolds number increases leads to suppose the existence of an asymptotic profile to which \( \overline{u} \) tends when viscous stresses become evanescent with respect to turbulent ones. Such profile is provided by Eq. (5.35) [33].

  11. 11.

    A Markov chain is defined as simple if the probability of the result of the (n + 1)-th experiment only depends on the result of the n-th experiment; if, conversely, it depends on the results of the previous k experiments, it is called a composite Markov chain of the k-th order.

  12. 12.

    The paper by Benjamin Peirce (1809–1880), Criterion for the rejection of doubtful observations (1852), and the posthumous treatise by William Chauvenet (1820–1870), A manual of spherical and practical astronomy (1878), are especially significant.

  13. 13.

    Thomas Joannes Stieltjes (1856–1894) was a Dutch mathematician known for his studies about integrals.

  14. 14.

    Using Lebesgue’s decomposition theorem, any distribution function may be written as \( F(x) = a_{1} F_{1} (x) + a_{2} F_{2} (x) + a_{3} F_{3} (x) \), being \( a_{i} \ge 0\,(i = 1,2,3) \), \( a_{1} + a_{2} + a_{3} = 1 \); F1 is an absolutely continuous function (anywhere continuous and differentiable for almost any x), F2 is a step function with a finite or infinitely enumerable number of steps, F3 is a singular function (continuous, with a null derivative almost everywhere). In case of probability distributions, F1 and F2 respectively correspond to continuous and discrete random variables. In the case of power spectral distributions, F1 and F2 respectively refer to continuous and discrete harmonic contents. In both cases, F3 corresponds to pathological conditions that are unlikely to be present in real problems.

  15. 15.

    Erik Ivar Fredholm (1866–1927) was a Swedish mathematician known for his contributions to integral equations. Equation (5.63) was discussed in a paper, Sur une classe d’equations fonctionnelles, which appeared on Acta Mathematica in 1903.

  16. 16.

    In the 1950s, RAND Corporation produced a table with 1,000,000 random numbers. After the correction of an error, the table was published in 1955.

  17. 17.

    Starting from the researches carried out by Harry Nyquist (1889–1976) about the transmission of information (Certain topics in telegraph transmission theory, 1928), in 1949 Shannon formulated the modern version of the sampling theorem (Communication in the presence of noise). It, now known as the Nyquist-Shannon’s theorem, defines the sampling frequency of a signal to avoid distortion. Given a f(t) signal with finite band amplitude (with an harmonic content limited by the ns frequency), and being known the minimum signal sampling frequency (n = 1/Δt, being Δt the sampling time), it must be at least equal to twice the maximum frequency of the signal (n ≥ 2ns).

  18. 18.

    ENIAC was presented to the press on 14 February 1946, creating sensation: the neon lamps indicating the status of the computation units were covered with ping-pong balls cut in half and turned on and off creating suggestive lighting effects. The term “electronic brain” came into existence with ENIAC. It was definitively turned off at 11:45 on 2 October 1955.

  19. 19.

    John von Neumann, Leo Szilard (1898–1964), Edward Teller (1908–2003) and Eugene Wigner (1902–1995), formed the so-called Hungarian clan, the core of the group that developed the atomic bomb Manhattan Project in Los Alamos. Besides being Hungarian, they also shared the same Jewish origins and the need to seek refuge from Nazi persecution in the U.S. It is said that Enrico Fermi (1901–1954), one of the prominent figures of the Manhattan Project, was sceptical about the existence of extra-terrestrial beings; one day Szilard told him: “they are already here, and you call them Hungarians”. Neumann came from a different planet. When he was 10, he fluently spoke four languages. During the gymnasium he was flanked by a university tutor who followed him with mathematics. At the age of 22 he graduated in chemical engineering in Zurich and in mathematics in Budapest, associating with Karman, Einstein and David Hilbert (1862–1943). In Los Alamos, the challenges among Richard Feynman (1918–1988), Fermi and Neumann on the most complex mathematical problems were famous: the first used a mechanical calculator, the second wrote on paper scraps, the third solved them in his mind.

References

  1. Strouhal V (1878) Uber eine besondere art dey tonnerregung. Wied Ann Physid Chem 10:216–251 Neue Folge, Band V, Heft

    Article  Google Scholar 

  2. Zdravkovich MM (1996) Different modes of vortex shedding: an overview. J Fluid Struct 10:427–437

    Article  Google Scholar 

  3. Lamb H (1895) Hydrodynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  4. Reynolds O (1883) An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos T R Soc. 174

    Google Scholar 

  5. Rouse H, Ince S (1954–1956) History of hydraulics. Series of Supplements to La Houille Blanche. Iowa Institute of Hydraulic Research, State University of Iowa

    Google Scholar 

  6. von Karman T (1954) Aerodynamics. Cornell University Press, Ithaca

    MATH  Google Scholar 

  7. Reynolds O (1894) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos T R Soc. 186

    Google Scholar 

  8. Anderson JD (1998) A history of aerodynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  9. Prandtl L (1905) Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhandlungen des dritten internationalen Mathematiker-Kongresses, Heidelberg, 1904, pp 484–491

    Google Scholar 

  10. Tani I (1977) History of boundary-layer theory. Ann Rev Fluid Mech 9:87–111

    Article  MATH  Google Scholar 

  11. Blasius H (1908) Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z Math Phys 56:1–37

    MATH  Google Scholar 

  12. Töpfer C (1912) Bemerkungen zu dem Aufsatz von H. Blasius: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z Math Phys 60:397–398

    Google Scholar 

  13. Hiemenz K (1911) Die Grenzschicht an einem in den gleichförmigen Flüssigkeits-strom eingetatuchten geraden Kreiszylinder. Gottinga, Ph.D. thesis. Dingler’s Polytech J. 326, 321–324, 344–348, 357–362, 372–376, 391–393, 407–410

    Google Scholar 

  14. von Kármán T (1911,1912) Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt. Göttinger Nachrichten, Math. Phys. Klasse. 509–517, 547–556

    Google Scholar 

  15. Mallock A (1907) On the resistance of air. Proc R Soc London, Ser A 79:262–265

    Article  MATH  Google Scholar 

  16. Bénard H (1908) Formation de centres de giration à l’arrière d’un obstacle en mouvement. C R Acad Sci, Paris. 147:839–842, 970–972

    Google Scholar 

  17. von Karman T, Rubach H (1912) Über den Mechanismus des Flussigkeits und Luft-widerstandes. Phys Zeits. 13, Jan 15

    Google Scholar 

  18. Eiffel G (1912) Sur la résistance des sphères dans l’air en mouvement. C R Acad Sci Paris 155:1597–1599

    MATH  Google Scholar 

  19. Prandtl L (1914) Der luftwiderstand von kugeln. Göttinger Nachrichten. Math Phys Klasse 177–190

    Google Scholar 

  20. Wieselsberger C (1914) Der Luftwiderstand von Kugeln. Z Flugtechn Motorluftshiffahrt 5:140–144

    Google Scholar 

  21. Buckingham E (1914) On physically similar systems: illustrations of the use of dimensional equations. Phys Rev 4:345

    Article  Google Scholar 

  22. Buckingham E (1915) The principle of similitude. Nature 96:396–397

    Article  MATH  Google Scholar 

  23. Rayleigh Lord (1915) Aeolian tones. Philos Mag Ser 6:433–444

    Article  Google Scholar 

  24. von Karman T (1921) Über laminare und turbulente Reibung. Z Angew Math Mech 1:233–252

    Article  MATH  Google Scholar 

  25. Pohlhausen K (1921) Zur näherungsweisen Integration der Differentialgleichung der laminaren Reibungsschicht. Z Angew Math Mech 1:252–268

    Article  MATH  Google Scholar 

  26. Anderson JD (2005) Ludwig Prandtl’s boundary layer. Phys Today 58:42–48

    Article  Google Scholar 

  27. Prandtl L (1927) The generation of vortices in fluids of small viscosity. J R Aeronaut Soc 31:720–741

    Article  Google Scholar 

  28. Tollmien W (1931) Grenzschichttheorie. In: Wien W, Harms F (eds) Handbuch der Experimentalphysik, vol IV, 1. Akademische, Leipzig, pp 239–287

    Google Scholar 

  29. Prandtl L (1931) Abriss der Strömungslehre. Vieweg, Braunschweig

    MATH  Google Scholar 

  30. Prandtl L (1935) The mechanism of viscous fluids. In: Durand WF (ed) Aerodyamic theory, vol 3. Springer, Berlin, pp 34–209

    Google Scholar 

  31. Goldstein S (1938) Modern developments fluid dynamics. Clarendon, Oxford

    Google Scholar 

  32. Dryden HL (1948) Recent advances in the mechanics of boundary layer flow. Academic Press, New York

    Book  Google Scholar 

  33. Schlichting H (1955) Boundary-layer theory. Mc Graw Hill, New York

    MATH  Google Scholar 

  34. Van der Hegge-Zijnen BG (1924) Measurements of the velocity distribution in the boundary layer along a plane surface. Ph.D. Thesis, University of Delft

    Google Scholar 

  35. Burgers JM (1925) The motion of a fluid in the boundary layer along a plane smooth surface. Proc, First Intern Congress of Appl Mech, Delft 1924:113–128

    Google Scholar 

  36. Hansen M (1928) Die Geschwindigkeitsverteilung in der Grenzschicht an einer eingetauchten Platte. Z Angew Math Mech, 8:185–199. (English translation in NACA TM 585, 1930)

    Google Scholar 

  37. Tollmien W (1929) Über die Entstehung der Turbulenz. I Mitt Nachr Ges Wiss Göttingen, Math Phys Klasse, 21–44. (English translation in NACA TM 609, 1931)

    Google Scholar 

  38. Tollmien W (1935) Ein allgemeines Kriterium der Instabilität laminarer Geschwindigkeitsverteilungen. Nachr Ges Wiss Göttingen, Math Phys Klasse, Fachgruppe I 1:79–114

    MATH  Google Scholar 

  39. Rayleigh Lord (1880) On the stability or certain fluid motions. Proc Math Soc London 11:57–72

    MathSciNet  MATH  Google Scholar 

  40. Dryden HL (1936) Airflow in the boundary layer near a plate. NACA Report 562

    Google Scholar 

  41. Dryden HL (1939) Turbulence and the boundary layer. J Atmos Sci 6:85–105

    Google Scholar 

  42. Schubauer GB, Skramstad HK (1947) Laminar boundary layer oscillations and stability of laminar flow. J Atmos Sci 14:69–78

    Google Scholar 

  43. Nikuradse J (1942) Laminare Reibungsschichten an der längsangeströmten Platte. Monograph Zentrale f wiss. Berichtswesen, Berlin

    Google Scholar 

  44. Schiller L (1932) Handbuch der experimental-physik IV, Part 4. Leipzig, pp 1–207

    Google Scholar 

  45. Goldstein S (1936) A note on roughness. ARC R&M 1763

    Google Scholar 

  46. Fage A, Preston JH (1941) On transition from laminar to turbulent flow in the boundary layer. Proc Roy Soc A 178:201–227

    Article  Google Scholar 

  47. Prandtl L (1921) Über den Reibungswiderstand strömender Luft. Ergebn AVA Göttingen, Ser 1:136

    MATH  Google Scholar 

  48. Blasius H (1913) Das Änlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten. Forschg Arb Ing-Wes. 134. Berlin

    Google Scholar 

  49. Hopf L (1923) Die Messung der hydraulischen Rauhigkeit. Z Angew Math Mech 3:329–339

    Article  Google Scholar 

  50. Prandtl L (1927) Über den Reibungswiderstand strömender Luft. Ergebn AVA Göttingen, Ser III

    Google Scholar 

  51. Nikuradse J (1932) Gesetzmässigkeit der turbulenten Strömung in glatten Rohren. Forschg Arb Ing-Wes N. 356

    Google Scholar 

  52. Nikuradse J (1933) Strömungsgesetze in rauhen Rohren. Forschg Arb Ing-Wes, N. 361

    Google Scholar 

  53. Prandtl L, Schlichting H (1934) Das Widerstandsgesetz rauthr Platten. Werft, Reederei, Hafen, pp 1–4

    Google Scholar 

  54. Schlichting H (1934) Neuere untersuchungen uber die turbulenzentstehung. Naturwiss. 22

    Google Scholar 

  55. Prandtl L (1925) Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z Angew Math Mech 5:136–139

    Article  MATH  Google Scholar 

  56. Prandtl L (1926) Uber die ausgebildete turbulenz. Verhandlungen des zweiten internationalen kongresses fur technische mechanik, Zurich, pp 62–74

    Google Scholar 

  57. von Kármán T (1930) Mechanische Ähnlichkeit und Turbulenz. Nachr Ges Wiss Göttingen Math Phys Klasse. 58–76. (English translation in NACA TM 611, 1931)

    Google Scholar 

  58. Betz A (1931) Die von Kármánsche Ähnlichkeitsüberlegung für turbulente Vorgänge in physikalischer Auffassung. Z Angew Math Mech 11:397

    Article  MATH  Google Scholar 

  59. Prandtl L (1932) Zur turbulenten Stromung in Rohren und laengs Platten. Ergebn Aerodyn Versuchsant Göttingen 4:18–29

    MATH  Google Scholar 

  60. Prandtl L (1933) Neuere Ergebnisse der Turbulenzforschung. Z Ver Deutsch Ing 77:105–114

    MATH  Google Scholar 

  61. Izakson AA (1937) On the formula for velocity distributions near walls. Tech Phys USSR 4:155–162

    Google Scholar 

  62. Millikan CB (1939) A critical discussion of turbulent flows in channels and circular pipes. Proc 5th Int Congr Appl Mech, Cambridge, Mass. 1938, 386–392

    Google Scholar 

  63. Goldstein S (1930) Concerning some solutions of the boundary layer equations in hydrodynamics. In: Proceedings of the Cambridge philosophical society, vol 26. pp 1–30

    Google Scholar 

  64. Prandtl L (1938) Zur Berechnung der Grenzschichten. Z Angew Math Mech 18:77–82

    Article  MATH  Google Scholar 

  65. Görtler H (1939) Weiterentwicklung eines Grenzschichtprofiles bei gegebenen Druckverlauf. Z Angew Math Mech 19:129–141

    Article  MATH  Google Scholar 

  66. Hartree DR (1939) A solution of the laminar boundary-layer equation for retarded flow. ARC R&M 2426

    Google Scholar 

  67. Relf EF, Simmons LFG (1924) The frequency of the eddies generated by the motion of circular cylinders through a fluid. ARC R&M, 917

    Google Scholar 

  68. Dryden HL, Heald RH (1925) Investigation of turbulence in wind tunnels by a study of the flow about cylinders. NACA Technical Report 231

    Google Scholar 

  69. Fage A, Johansen FC (1927) The structure of vortex streets. ARC R&M 1143

    Google Scholar 

  70. Ruedy R (1935) Vibrations of power lines in a steady wind. Can J Res A 13:99–110

    Article  MATH  Google Scholar 

  71. Landweber L (1942) Flow about a pair of adjacent parallel cylinders normal to a stream. Report 485, In: David W. Taylor model basin, Washington, DC

    Google Scholar 

  72. Spivak HM (1946) Vortex frequency and flow pattern in the wake of two parallel cylinders at varied spacing normal to an air stream. J Aeronaut Sci 6:289–301

    Article  Google Scholar 

  73. Gutsche F (1937) Das, singen’ von schiffsschrauben. Z Ver Dtsch Ing 81:882–883

    Google Scholar 

  74. Gongwer CA (1952) A study of vanes singing in water. J Appl Mech 19:432–438

    Google Scholar 

  75. Kovasnay LSG (1949) Hot wire investigations or the wake behind cylinders at low Reynolds numbers. P R Soc London, Ser A 198:174

    Article  Google Scholar 

  76. Birkhoff GD (1952) A new theory of vortex streets. P Natl Acad Sci 38:409–410

    Article  MathSciNet  MATH  Google Scholar 

  77. Birkhoff GD (1953) Formation or vortex streets. J Appl Phys 24:98–103

    Article  MathSciNet  MATH  Google Scholar 

  78. Roshko A (1954) On the development of turbulent wakes from vortex streets. NACA Rep. 1191

    Google Scholar 

  79. Roshko A (1955) On the wake and drag of bluff bodies. J Aeronaut Sci 22:124–132

    Article  MATH  Google Scholar 

  80. Tritton DJ (1959) Experiments on the flow past a circular cylinder at low Reynolds numbers. J Fluid Mech 6:547–567

    Article  MATH  Google Scholar 

  81. Humphreys JS (1960) On a circular cylinder in a steady wind at transition Reynolds numbers. J Fluid Mech 9:603–612

    Article  MATH  Google Scholar 

  82. Wille R (1960) Karman vortex streets. Adv Appl Mech 6:273–287

    Article  MATH  Google Scholar 

  83. Marris AW (1964) A review on vortex streets, periodic wakes, and induced vibration phenomena. J Basic Eng Trans ASME 86:185–193

    Article  Google Scholar 

  84. Berger E, Wille R (1972) Periodic flow phenomena. Ann Rev Fluid Mech 4:313–340

    Article  Google Scholar 

  85. Lettau H (1939) Atmosphaerische turbulenz. Akademische Verlagsgesellschaft, Leipzig

    Google Scholar 

  86. Wehner H (1949) Untersuchung mikrobarographischer wellen auf Jan Mayen. Dissertation University of Leipzig, Akademie-Verlag, Berlin

    Google Scholar 

  87. Glauert MB (1956) The wall jet. J Fluid Mech 1:625–643

    Article  MathSciNet  Google Scholar 

  88. Prandtl L (1942) Bemerkungen zur Theorie der freien Turbulenz. Z Angew Math Mech 22:241–243

    Article  MathSciNet  MATH  Google Scholar 

  89. Bakke P (1957) An experimental investigation of a wall jet. J Fluid Mech 2:467–472

    Article  Google Scholar 

  90. Maistrov. A historical sketch LE (1974) Probability theory. Academic Press, New York

    Google Scholar 

  91. Lyapunov MA (1907) Problème général de la stabilité du mouvement. Ann Fac Sci Toulouse. 9:203–274. (translation of a 1893 Russian paper on Comm Soc Math Kharkow)

    Google Scholar 

  92. Lindeberg JW (1922) Eine neue Herleitung des Exponentialgesetzes in der Wahrschienlichkeitsrechnung. Math Zeit 15:211–225

    Article  MATH  Google Scholar 

  93. Bernstein SN (1927) Sur l’extension du théorème limite du calcul des probabilités aux sommes de quantités dépendantes. Math Ann 97:1–59

    Article  MathSciNet  MATH  Google Scholar 

  94. Feller W (1935) Über den Zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung. Math Zeit 40:521–559

    Article  MathSciNet  MATH  Google Scholar 

  95. von Mises R (1939) Probability, statistics and truth. MacMillan, New York

    MATH  Google Scholar 

  96. Kolmogorov AN (1950) Foundations of the theory of probability. Chelsea, New York

    Google Scholar 

  97. Cramér H (1937) Random variables and probability distributions. Cambridge University Press, London

    MATH  Google Scholar 

  98. Parzen E (1960) Modern probability and its applications. John Wiley, New York

    MATH  Google Scholar 

  99. Tippett LHC (1925) On the extreme individuals and the range of samples taken from a normal population. Biometrika 17:364–387

    Article  MATH  Google Scholar 

  100. Dodd EL (1923) The greatest and the least variate under general laws of error. Trans Am Math Soc 25:525–539

    Article  MathSciNet  MATH  Google Scholar 

  101. Fréchet M (1927) Sur la loi de probabilitè de l’écart maximum. Ann de la Soc Polonaise de Math Cracow 6:93–125

    Google Scholar 

  102. Fisher RA, Tippett LHC (1928) Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc Cambridge Phil Soc 24:180–190

    Google Scholar 

  103. von Mises R (1936) La distribution de la plus grande de n valeurs. Revue Math de l’Union Interbalkanique, Athens 1:141–160

    Google Scholar 

  104. Gnedenko BV (1943) Sur la distribution limite du terme maximum d’une serie aléatorie. Ann Math 44:423–453

    Article  MathSciNet  MATH  Google Scholar 

  105. Wilks SS (1948) Order statistics. Bull Am Math Soc 54:6–50

    Article  MathSciNet  MATH  Google Scholar 

  106. National Bureau of Standards (1953) Probability tables for the analysis of extreme value data. Appl Math Ser. 22

    Google Scholar 

  107. Gumbel EJ (1954) Statistical theory of extreme values and some practical applications. Nat Bureau of Stand, Appl Math Ser 33

    MATH  Google Scholar 

  108. Johnson LG (1954) An axiomatic derivation of a general S-N equation. Industrial Math 4:1

    Google Scholar 

  109. Silva Leme RAD (1954) Os extremos de amostras ocasionais e suas applicações à engenharia. Thesis, University of São Paulo

    Google Scholar 

  110. Jenkinson AF (1955) The frequency distribution of the annual maximum (or minimum) of meteorological elements. Quart J Roy Meteorol Soc 81:158–171

    Article  Google Scholar 

  111. Gumbel EJ (1958) Statistics of extremes. Columbia University Press, New York

    Book  MATH  Google Scholar 

  112. Rosin P, Rammler E (1933) The laws governing the fineness of powdered coal. J Inst Fuel 7:29–36

    Google Scholar 

  113. Weibull W (1939) A statistical theory of the strength of materials. Ingeniörsvetenskapsakademiens Handlingar N. 151, Stockolm

    Google Scholar 

  114. Weibull W (1939) The phenomenon of rupture in solids. Ingeniörsvetenskapsakademiens Handlingar 153, Stockolm

    Google Scholar 

  115. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech ASME 18:293–297

    MATH  Google Scholar 

  116. Solari G, Carassale L, Tubino F (2007) Proper orthogonal decomposition in wind engineering. Part 1: a state-of-the-art and some prospects. Wind Struct 10:153–176

    Article  Google Scholar 

  117. Beltrami E (1873) Sulle funzioni bilineari. G di Mathematiche di Battaglini 11:98–106

    MATH  Google Scholar 

  118. Jordan MC (1874) Mémorie sur les Formes Bilinéaires. J Math Pures Appl 19:35–54

    MATH  Google Scholar 

  119. Sylvester JJ (1889) On the reduction of a bilinear quantic of the nth order to the form of a sum of n products by a double orthogonal substitution. Messenger Math 19:42–46

    Google Scholar 

  120. Schmidt E (1907) Zur Theorie de linearen und nichtlinearen Integralgleichungen. I Teil. Entwecklung willkurlichen Funktionen nach System vorgeschreibener. Math Ann 63:433–476

    Article  MathSciNet  Google Scholar 

  121. Weyl H (1912) Das Asymptotische Verteilungs gesetz der Eigenwert linearer partieller Differentialgleichungen (mit einer Anwendung auf der Theorie der Hohlraumstrahlung). Math Ann 71:441–479

    Article  MathSciNet  MATH  Google Scholar 

  122. Autonne L (1915) Sur les matrices hypohermitiennes et sur les matrices unitaires. Ann Univ Lyon 38:1–77

    MATH  Google Scholar 

  123. Eckart C (1934) The kinetic energy of polyatomic molecules. Phys Rev 46:383–387

    Article  MATH  Google Scholar 

  124. Eckart C, Young G (1936) The approximation of one matrix by another of lower rank. Psychometrika 1:211–218

    Article  MATH  Google Scholar 

  125. Eckart C, Young G (1939) A principal axis transformation for non-hermitian matrices. Bull Am Math Soc 45:118–121

    Article  MathSciNet  MATH  Google Scholar 

  126. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Phil Mag 2:559–572

    Article  MATH  Google Scholar 

  127. Spearman C (1904) General intelligence, objectively determined and measured. Am J Psych 15:201–293

    Article  Google Scholar 

  128. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:498–520

    Article  MATH  Google Scholar 

  129. Hotelling H (1936) Simplified calculation of principal components. Psychometrika 1:27–35

    Article  MATH  Google Scholar 

  130. Girshick MA (1936) Principal components. J Amer Statist Assoc 31:519–528

    Article  MATH  Google Scholar 

  131. Schuster A (1898) On the investigation of hidden periodicities with application to a supposed 26-day period of meteorological phenomena. Terr Mag Atmos Elect 3:13–41

    Article  Google Scholar 

  132. Schuster A (1906) On the periodicities of sunspots. Phil Trans Ser A. 206:69–100

    Article  Google Scholar 

  133. Taylor GI (1921) Diffusion by continuous movements. Proc London Math Soc 20:196–212

    MathSciNet  MATH  Google Scholar 

  134. Yule GU (1927) On a method of investigating periodicities in disturbed, series with special reference to Wolfer’s sunspot numbers. Phil Trans, Ser A 226:267–298

    Article  MATH  Google Scholar 

  135. Slutsky E (1937) The summation of random causes as the source of cyclic processes. Econometrika 5:105–146

    Article  Google Scholar 

  136. Wold HO (1938) A study in the analysis of stationary time series. Almquist and Wicksell, Uppsala

    MATH  Google Scholar 

  137. Box GEP, Jenkins GM (1976) Time series analysis forecasting and control. Holden-Day, Oakland, California

    MATH  Google Scholar 

  138. Wiener N (1930) Generalized harmonic analysis. Acta Math 55:117–258

    Article  MathSciNet  MATH  Google Scholar 

  139. Khinchin AJ (1934) Korreltionstheorie der stationaren stochastischen prozesse. Math Ann 109:604–615

    Article  MathSciNet  Google Scholar 

  140. Taylor GI (1938) The spectrum of turbulence. Proc Roy Soc London, A 164:476–490

    Article  MATH  Google Scholar 

  141. Wiener N (1949) Extrapolation, interpolation and smoothing of stationary time series. MIT Press, Cambridge, Massachussets

    MATH  Google Scholar 

  142. Kosambi DD (1943) Statistics in function space. J Indian Math Soc 7:76–88

    MathSciNet  MATH  Google Scholar 

  143. Loeve M (1945) Fonctions aléatoire de second ordre. Compte Red Acad Sci, Paris 220

    Google Scholar 

  144. Karhunen K (1946) Zur spektraltheorie stochastischer prozess. Ann Acad Sci Fennicae 1:34

    MathSciNet  MATH  Google Scholar 

  145. Kac M, Siegert AJF (1947) An eplicit representation of a stationary Gaussian process. Ann Math Stat 18:438–442

    Article  MATH  Google Scholar 

  146. Loeve M (1955) Probability theory. Van Nostrand, New York

    MATH  Google Scholar 

  147. Lumley JL (1970) Stochastic tools in turbulence. Academic Press, New York

    MATH  Google Scholar 

  148. Carassale L, Solari G, Tubino F (2007) Proper orthogonal decomposition in wind engineering. Part 2: theoretical aspects and some applications. Wind Struct 10:177–208

    Article  Google Scholar 

  149. Rice SO (1944) Mathematical analysis of random noise. Bell Syst Tech J 23:282–332

    Article  MathSciNet  MATH  Google Scholar 

  150. Rice SO (1945) Mathematical analysis of random noise. Bell Syst Tech J 24:46–156

    Article  MathSciNet  MATH  Google Scholar 

  151. Rayleigh Lord (1877) Theory of sound. MacMillan, London

    MATH  Google Scholar 

  152. Siegert AJF (1951) On the first passage time probability problem. Phys Rev 81:617–623

    Article  MathSciNet  MATH  Google Scholar 

  153. Darling DA, Siegert AJF (1953) The first passage problem for a continuous Markov process. Ann Math Stat 24:624–639

    Article  MathSciNet  MATH  Google Scholar 

  154. Cartwright DE, Longuet-Higgins MS (1956) The statistical distribution of the maxima of a random function. Proc Roy Soc London, Ser A 237:212–232

    Article  MathSciNet  MATH  Google Scholar 

  155. Rayleigh Lord (1880) On the resultant of a large number of vibrations of the same pitch and of arbitrary phase. Philos Mag 10:73–78

    Article  Google Scholar 

  156. James HM, Nichols NB, Phillips RS (1947) Theory of servomechanisms. McGraw-Hill, New York

    Google Scholar 

  157. Davenport WB, Root WL (1956) An introduction to the theory of random signals and noise. McGraw-Hill, New York

    MATH  Google Scholar 

  158. Lanning JH, Battin RH (1956) Random processes in automatic control. McGraw Hill, New York

    Google Scholar 

  159. Hannan EJ (1960) Time series analysis. Methuen, London

    Google Scholar 

  160. Middleton D (1960) An introduction to statistical communication theory. McGraw-Hill, New York

    MATH  Google Scholar 

  161. Parzen E (1961) An approach to time series analysis. Ann Math Stat 32:951–989

    Article  MATH  Google Scholar 

  162. Miles JW (1954) On structural fatigue under random loading. J Aero Sci 21:753–762

    Article  MATH  Google Scholar 

  163. Mark WD (1961) The inherent variation in fatigue damage resulting from random vibration. Ph.D. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology

    Google Scholar 

  164. Blackman RB, Tukey JW (1959) The measurement of power spectra from the point of view of communications engineering. Dover Publications, New York

    MATH  Google Scholar 

  165. Parzen E (1961) Mathematical considerations in estimation of spectra. Technometrics 3:167–190

    Article  MathSciNet  MATH  Google Scholar 

  166. Cooley JW, Tukey JW (1965) An algorithm for the machine calculation or complex Fourier series. Maths Comput 19:297–301

    Article  MathSciNet  MATH  Google Scholar 

  167. Tippett LHC (1927) Random sampling numbers. Cambridge University Press

    Google Scholar 

  168. Kendall MG, Babington-Smith B (1939) Second paper on random sampling numbers. Suppl J R Stat Soc 6:51–61

    Article  Google Scholar 

  169. von Neumann J (1951) Various techniques used in connection with random digits. Appl Math Ser 12:36–38 U.S. National Bureau of Standards

    Google Scholar 

  170. Rosen S (1969) Electronic computers: a historical survey. Comput Surv 1:7–36

    Article  MATH  Google Scholar 

  171. Goldstine HH (1980) The computer: from Pascal to von Neumann. Princeton University Press, New Jersey

    MATH  Google Scholar 

  172. Zientara M (1981) The history of computing: a biographical portrait of the visionaries who shaped the destiny of the computer industry. CW Communications, Redditch Worcs, UK

    Google Scholar 

  173. Augarten S (1984) Bit by bit: an illustrated history of computers. Ticknor and Fields, New York

    Google Scholar 

  174. Colombo U, Lanzavecchia G (ed) (2002) La nuova scienza, In: La società dell’informazione, vol 3. Libri Scheiwiller, Milan

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Solari .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Solari, G. (2019). Scientific Progress and Its Impact on Wind. In: Wind Science and Engineering. Springer Tracts in Civil Engineering . Springer, Cham. https://doi.org/10.1007/978-3-030-18815-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18815-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18814-6

  • Online ISBN: 978-3-030-18815-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics