Skip to main content

Simulation Optimization Through Regression or Kriging Metamodels

  • Chapter
  • First Online:
High-Performance Simulation-Based Optimization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 833))

Abstract

This chapter surveys two methods for the optimization of real-world systems that are modelled through simulation. These methods use either linear regression or Kriging (Gaussian processes) metamodels. The metamodel guides the design of the experiment; this design fixes the input combinations of the simulation model. The linear-regression metamodel uses a sequence of local first-order and second-order polynomials—known as response surface methodology (RSM). Kriging models are global, but are re-estimated through sequential designs. “Robust” optimization may use RSM or Kriging, to account for uncertainty in simulation inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ankenman, B., Nelson, B., Staum, J.: Stochastic Kriging for simulation metamodeling. Oper. Res. 58(2), 371–382 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bartz-Beielstein, T., Zaefferer, M.: Model-based methods for continuous and discrete global optimization. Appl. Soft Comput. 55, 154–167 (2017)

    Article  Google Scholar 

  3. Bertsimas, D., Mišić, V.V.: Robust product line design. Oper. Res. 65(1), 19–37 (2017)

    Article  MathSciNet  Google Scholar 

  4. Binois, M., Gramacy, R.B., Ludkovskiz, M.: Practical heteroskedastic Gaussian process modeling for large simulation experiments (2016). 17 Nov 2016

    Google Scholar 

  5. Chatterjee, T., Chakraborty, S., Chowdhury, R.: A critical review of surrogate assisted robust design optimization. Arch. Comput. Methods Eng. 26(1), 245–274 (2017)

    Article  MathSciNet  Google Scholar 

  6. Cressie, N.A.C.: Statistics for Spatial Data, revised edn. Wiley, New York (1993)

    MATH  Google Scholar 

  7. Dellino, G., Kleijnen, J.P.C., Meloni, C.: Robust optimization in simulation: Taguchi and response surface methodology. Int. J. Prod. Econ. 125(1), 52–59 (2010)

    Article  Google Scholar 

  8. Dellino, G., Kleijnen, J.P.C., Meloni, C.: Robust optimization in simulation: Taguchi and Krige combined. Informs J. Comput. 24(3), 471–484 (2012)

    Article  MathSciNet  Google Scholar 

  9. Erickson, C.B., Ankenman B.E., Sanchez, S.M.: Comparison of Gaussian process modeling software. European J. Operat. Res. 266, 179–192 (2018)

    Article  MathSciNet  Google Scholar 

  10. Friese, M., Bartz-Beielstein, T., Emmerich, M.: Building ensembles of surrogates by optimal convex combinations. In: Conference Paper (2016)

    Google Scholar 

  11. Gramacy, R.B.: LAGP: large-scale spatial modeling via local approximate Gaussian processes. J. Stat. Softw. (Available as a vignette in the LAGP package) (2015)

    Google Scholar 

  12. Hamdi, H., Couckuyt, I., Costa Sousa, M., Dhaene, T.: Gaussian processes for history-matching: application to an unconventional gas reservoir. Comput. Geosci. 21, 267–287 (2017)

    Article  MathSciNet  Google Scholar 

  13. Havinga, J., van den Boogaard, A.H., Klaseboer, G.: Sequential improvement for robust optimization using an uncertainty measure for radial basis functions. Struct. Multidiscip. Optim. 55, 1345–1363 (2017)

    Article  MathSciNet  Google Scholar 

  14. Jalali, H., Van Nieuwenhuyse, I.: Simulation optimization in inventory replenishment: a classification. IIE Trans. 47(11), 1217–1235 (2015)

    Article  Google Scholar 

  15. Jilu, F., Zhili, S., Hongzhe, S.: Optimization of structure parameters for angular contact ball bearings based on Kriging model and particle swarm optimization algorithm. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231(23), 4298–4308 (2017)

    Article  Google Scholar 

  16. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13, 455–492 (1998)

    Article  MathSciNet  Google Scholar 

  17. Kajero, O.T., Thorpe, R., Yao, Y., Wong, D.S.H., Chen, T.: Meta-model based calibration and sensitivity studies of CFD simulation of jet pumps. Chem. Eng. Technol. 40(9), 1674–1684 (2017)

    Article  Google Scholar 

  18. Kleijnen, J.P.C.: Design and Analysis of Simulation Experiments, 2nd edn. Springer, Berlin (2015)

    Book  Google Scholar 

  19. Kleijnen, J.P.C.: Design and analysis of simulation experiments: tutorial. In: Tolk, A., Fowler, J., Shao, G., Yucesan, E. (eds.) Advances in Modeling and Simulation: Seminal Research from 50 Years of Winter Simulation Conferences, pp. 135–158. Springer, Berlin (2017)

    Google Scholar 

  20. Kleijnen, J.P.C., Shi, W.: Sequential probability ratio tests: conservative and robust. CentER Discussion Paper; vol. 2017-001, Tilburg: CentER, Center for Economic Research (2017)

    Google Scholar 

  21. Kleijnen, J.P.C., van Beers, W.C.M.: Prediction for big data through Kriging. CentER Discussion Paper; Center for Economic Research (CentER), Tilburg University, forthcoming (2017)

    Google Scholar 

  22. Law, A.M.: Simulation Modeling and Analysis, 5th edn. McGraw-Hill, Boston (2015)

    Google Scholar 

  23. Liu, Z., Rexachs, D., Epelde, F., Luque, E.: A simulation and optimization based method for calibrating agent-based emergency department models under data scarcity. Comput. Ind. Eng. 103, 300–309 (2017)

    Article  Google Scholar 

  24. Lophaven, S.N., Nielsen, H.B., Sondergaard, J.: DACE: a Matlab Kriging toolbox, version 2.0. IMM Technical University of Denmark, Kongens Lyngby (2002)

    Google Scholar 

  25. Moghaddam, S., Mahlooji, H.: A new metamodel-based method for solving semi-expensive simulation optimization problems. Commun. Stat. Simul. Comput. 46(6), 4795–4811 (2017)

    Article  MathSciNet  Google Scholar 

  26. Montgomery, D.C.: Design and Analysis of Experiments, 7th edn. Wiley, Hoboken (2009)

    Google Scholar 

  27. Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd edn. Wiley, New York (2009)

    MATH  Google Scholar 

  28. Pontes, F.J., Amorim, G.F., Balestrassi, P.P., Paiva, A.P., Ferreira, J.R.: Design of experiments and focused grid search for neural network parameter optimization. Neurocomputing 186, 22–34 (2016)

    Article  Google Scholar 

  29. Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine Learning. MIT, Cambridge (2006)

    MATH  Google Scholar 

  30. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments (includes comments and rejoinder). Stat. Sci. 4(4), 409–435 (1989)

    Article  Google Scholar 

  31. Sanchez, S.M., Lucas, T.W., Sanchez, P.J., Nannini, C.J., Wan, H.: Designs for large-scale simulation experiments, with applications to defense and homeland security. In: Hinkelmann, K. (ed.) Design and Analysis of Experiments, Volume 3, Special Designs and Applications, pp. 413–442. Wiley, New York (2012)

    Chapter  Google Scholar 

  32. Shi, X., Tong, C., Wang, L.: Evolutionary optimization with adaptive surrogates and its application in crude oil distillation. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens Greece, pp. 1–8 (2016)

    Google Scholar 

  33. Simpson, T.W., Booker, A.J., Ghosh, D., Giunta, A.A., Koch, P.N., Yang, R.-J.: Approximation methods in multidisciplinary analysis and optimization: a panel discussion. Struct. Multidiscip. Optim. 27(5), 302–313 (2004)

    Article  Google Scholar 

  34. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process. Syst. 2951–2959 (2012)

    Google Scholar 

  35. Yanikoğlu, I., den Hertog, D., Kleijnen, J.P.C.: Robust dual-response optimization. IIE Trans. Ind. Eng. Res. Dev. 48(3), 298–312 (2016)

    Google Scholar 

  36. Yousefi, M., Yousefi, M., Ferreira, R.P.M., Kim, J.H., Fogliatto, F.S.: Chaotic genetic algorithm and Adaboost ensemble metamodeling approach for optimum resource planning in emergency departments. Artif. Intell. Med. 84, 23–33 (2018)

    Article  Google Scholar 

  37. Yu, H., Tan, Y., Sun, C., Zeng, J., Jin, Y.: An adaptive model selection strategy for surrogate-assisted particle swarm optimization algorithm. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8 (2016)

    Google Scholar 

  38. Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation, 2nd edn. Academic, San Diego (2000)

    MATH  Google Scholar 

  39. Zhang, W., Xu, W.: Simulation-based robust optimization for the schedule of single-direction bus transit route: the design of experiment. Transp. Res. Part E 106, 203–230 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

I thank Thomas Bartz-Beielstein for his very useful comments on the first version of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack P. C. Kleijnen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kleijnen, J.P.C. (2020). Simulation Optimization Through Regression or Kriging Metamodels. In: Bartz-Beielstein, T., Filipič, B., Korošec, P., Talbi, EG. (eds) High-Performance Simulation-Based Optimization. Studies in Computational Intelligence, vol 833. Springer, Cham. https://doi.org/10.1007/978-3-030-18764-4_6

Download citation

Publish with us

Policies and ethics