Skip to main content

Pragmatic Trials and New Informatics Methods to Supplement or Replace Phase IV Trials

  • Chapter
  • First Online:
Personalized and Precision Medicine Informatics

Part of the book series: Health Informatics ((HI))

Abstract

Given the importance of clinical trials (CT) for the approval of new drugs, and the many current obstacles to CT execution, there is an urgent need for CT improvement. This chapter discusses pragmatic trials and other informatics-enabled enhancements to Phase IV CT that completely change the original definitions of CT and may be seen as full replacements to Phase IVs. These developments are important for reducing costs and time-lines for the CT process, reducing risk of withdrawal from the market, and they are also useful for drug repurposing. Importantly, the future of Phase IV CTs is one that relies heavily on data collected via the EHR enabling a continuous and individualized Phase IV trial model. The EHR thus is a foundation to a continuous pragmatic Phase IV registry and a key tool in support of precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sertkaya A, Birkenbach A, Berlind A, Eyraud J. Examination of clinical trial costs and barriers for drug development. Washington, DC: US Department of Health and Human Services; 2014.

    Google Scholar 

  2. Bennani YL. Drug discovery in the next decade: innovation needed ASAP. Drug Discov Today [Internet]. 2011;16:779–92. https://www.sciencedirect.com/science/article/pii/S1359644611001826?via%3Dihub.

    Article  Google Scholar 

  3. Vallance P. Developing an open relationship with the drug industry. Lancet [Internet]. 2005;366:1062–4. https://www.sciencedirect.com/science/article/pii/S0140673605668353?via%3Dihub.

    Article  Google Scholar 

  4. Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R & D efficiency. Nat Rev Drug Discov [Internet]. 2012;11:191–200. http://www.ncbi.nlm.nih.gov/pubmed/22378269.

    Article  CAS  Google Scholar 

  5. Cesana BM, Biganzoli EM. Phase IV Studies: some insights, clarifications, and issues. Curr Clin Pharmacol [Internet]. 2018;13:14–20. http://www.eurekaselect.com/161232/article.

    Article  Google Scholar 

  6. Kiri VA. A pathway to improved prospective observational post-authorization safety studies. Drug Saf [Internet]. 2012;35:711–24. http://link.springer.com/10.1007/BF03261968.

    Article  Google Scholar 

  7. Post-authorisation safety studies (PASS)|European Medicines Agency [Internet]. https://www.ema.europa.eu/human-regulatory/post-authorisation/pharmacovigilance/post-authorisation-safety-studies-pass. Cited 9 Sept 2018.

  8. European Medicines Agency, Heads of Medicines Agencies. Guideline on good pharmacovigilance practices (GVP)Module VIII – Post-authorisation safety studies (Rev 3) [Internet]. 2017. https://www.ema.europa.eu/documents/scientific-guideline/guideline-good-pharmacovigilance-practices-gvp-module-viii-post-authorisation-safety-studies-rev-3_en.pdf.

  9. Rosenthal GE. The role of pragmatic clinical trials in the evolution of learning health systems. Trans Am Clin Climatol Assoc [Internet]. 2014;125:204–16. discussion 217-8. http://www.ncbi.nlm.nih.gov/pubmed/25125735.

    Google Scholar 

  10. Oster G, Sullivan SD, Dalal MR, Kazemi MR, Rojeski M, Wysham CH, et al. Achieve control: a pragmatic clinical trial of insulin glargine 300 U/mL versus other basal insulins in insulin-naïve patients with type 2 diabetes. Postgrad Med [Internet]. 2016;128:731–9. http://www.ncbi.nlm.nih.gov/pubmed/27690710.

    Article  Google Scholar 

  11. PCORnet The National Patient-Centered Clinical Research Network. PCORnet, the National Patient-Centered Clinical Research Network - PCORnet [Internet]. https://pcornet.org/.

  12. Roland M, Torgerson DJ. What are pragmatic trials? BMJ [Internet]. 1998;316:285. http://www.ncbi.nlm.nih.gov/pubmed/9472515.

    Article  CAS  Google Scholar 

  13. McCabe B, Liberante F, Mills KI. Repurposing medicinal compounds for blood cancer treatment. Ann Hematol [Internet]. 2015;94:1267–76. http://www.ncbi.nlm.nih.gov/pubmed/26048243.

    Article  CAS  Google Scholar 

  14. Hernandez JJ, Pryszlak M, Smith L, Yanchus C, Kurji N, Shahani VM, et al. Giving drugs a second chance: overcoming regulatory and financial hurdles in repurposing approved drugs as cancer therapeutics. Front Oncol [Internet]. 2017;7:273. http://www.ncbi.nlm.nih.gov/pubmed/29184849.

    Article  Google Scholar 

  15. Deftereos SN, Andronis C, Friedla EJ, Persidis A, Persidis A. Drug repurposing and adverse event prediction using high-throughput literature analysis. Wiley Interdiscip Rev Syst Biol Med [Internet]. 2011;3:323–34. http://www.ncbi.nlm.nih.gov/pubmed/21416632.

    Article  CAS  Google Scholar 

  16. AHRQ Agency for Healthcare Research & Quality. AHRQ Agency for Healthcare Research and Quality [Internet]. Rockville, MD: AHRQ Agency for Healthcare Research & Quality. https://www.ahrq.gov/.

  17. Stockwell DC, Bisarya H, Classen DC, Kirkendall ES, Landrigan CP, Lemon V, et al. A trigger tool to detect harm in pediatric inpatient settings. Pediatr Int. 2015;135:1036–42. http://www.ncbi.nlm.nih.gov/pubmed/25986015.

    Google Scholar 

  18. Center for Drug Evaluation and Research- US Food and Drug Administration. Drug approvals and databases - FDA adverse event reporting system (FAERS) [Internet]. Silver Spring, MD: Center for Drug Evaluation and Research; 2017. https://www.fda.gov/drugs/informationondrugs/ucm135151.htm.

    Google Scholar 

  19. MedDra Medical Dictionary for Regulatory Activities. Vision for MedDRA [Internet]. VA: McLean. https://www.meddra.org/about-meddra/vision.

  20. Wong A, Plasek JM, Montecalvo SP, Zhou L. Natural language processing and its implications for the future of medication safety: a narrative review of recent advances and challenges. Pharmacother J Hum Pharmacol Drug Ther [Internet]. 2018;38:822–41. https://doi.org/10.1002/phar.2151.

    Article  Google Scholar 

  21. Wang X, Hripcsak G, Markatou M, Friedman C. Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study. J Am Med Informatics Assoc [Internet]. 2009;16:328–37. https://doi.org/10.1197/jamia.M3028.

    Article  Google Scholar 

  22. Munkhdalai T, Liu F, Yu H. Clinical relation extraction toward drug safety surveillance using electronic health record narratives: classical learning versus deep learning. JMIR Public Heal Surveill [Internet]. 2018;4:e29. http://www.ncbi.nlm.nih.gov/pubmed/29695376.

    Article  Google Scholar 

  23. Begaud B, Moride Y, Tubert-Bitter P, Chaslerie A, Haramburu F. False-positives in spontaneous reporting: should we worry about them? Br J Clin Pharmacol [Internet]. 1994;38:401–4. http://www.ncbi.nlm.nih.gov/pubmed/7893579.

    Article  CAS  Google Scholar 

  24. Zhan C, Roughead E, Liu L, Pratt N, Li J. A data-driven method to detect adverse drug events from prescription data. J Biomed Inform [Internet]. 2018;85:10–20. https://www.sciencedirect.com/science/article/pii/S1532046418301394?via%3Dihub.

    Article  Google Scholar 

  25. Luo Y, Thompson WK, Herr TM, Zeng Z, Berendsen MA, Jonnalagadda SR, et al. Natural language processing for EHR-based pharmacovigilance: a structured review. Drug Saf [Internet]. 2017;40:1075–89. http://www.ncbi.nlm.nih.gov/pubmed/28643174.

    Article  Google Scholar 

  26. Iqbal E, Mallah R, Rhodes D, Wu H, Romero A, Chang N, et al. ADEPt, a semantically-enriched pipeline for extracting adverse drug events from free-text electronic health records. PLoS One [Internet]. 2017;12:e0187121. https://doi.org/10.1371/journal.pone.0187121.

    Article  CAS  Google Scholar 

  27. Combi C, Zorzi M, Pozzani G, Moretti U, Arzenton E. From narrative descriptions to MedDRA: automagically encoding adverse drug reactions. J Biomed Inform [Internet]. 2018;84:184–99. https://www.sciencedirect.com/science/article/pii/S1532046418301278?via%3Dihub.

    Article  Google Scholar 

  28. Nadkarni PM. Drug safety surveillance using de-identified EMR and claims data: issues and challenges. J Am Med Informatics Assoc [Internet]. 2010;17:671–4. https://doi.org/10.1136/jamia.2010.008607.

    Article  Google Scholar 

  29. Classen DC, Resar R, Griffin F, Federico F, Frankel T, Kimmel N, et al. ‘Global trigger tool’ shows that adverse events in hospitals may be ten times greater than previously measured. Health Aff [Internet]. 2011;30:581–9. https://doi.org/10.1377/hlthaff.2011.0190.

    Article  Google Scholar 

  30. Kho AN, Cashy JP, Jackson KL, Pah AR, Goel S, Boehnke J, et al. Design and implementation of a privacy preserving electronic health record linkage tool in Chicago. J Am Med Informatics Assoc [Internet]. 2015;22:1072–80. https://doi.org/10.1093/jamia/ocv038.

    Article  Google Scholar 

  31. Ohmann C, Banzi R, Canham S, Battaglia S, Matei M, Ariyo C, et al. Sharing and reuse of individual participant data from clinical trials: principles and recommendations. BMJ Open [Internet]. 2017;7:e018647. http://www.ncbi.nlm.nih.gov/pubmed/29247106.

    Article  Google Scholar 

  32. Fleurence RL, Curtis LH, Califf RM, Platt R, Selby JV, Brown JS. Launching PCORnet, a national patient-centered clinical research network. J Am Med Informatics Assoc [Internet]. 2014;21:578–82. https://doi.org/10.1136/amiajnl-2014-002747.

    Article  Google Scholar 

  33. Kayaalp M. Modes of de-identification. AMIA Annu Symp Proc [Internet]. 2017;2017:1044–50. http://www.ncbi.nlm.nih.gov/pubmed/29854172.

    Google Scholar 

  34. Masnoon N, Shakib S, Kalisch-Ellett L, Caughey GE. What is polypharmacy? A systematic review of definitions. BMC Geriatr [Internet]. 2017;17:230. http://bmcgeriatr.biomedcentral.com/articles/10.1186/s12877-017-0621-2.

    Article  Google Scholar 

  35. Qato DM, Wilder J, Schumm LP, Gillet V, Alexander GC. Changes in prescription and over-the-counter medication and dietary supplement use among older adults in the United States, 2005 vs 2011. JAMA Intern Med [Internet]. 2016;176:473–82. http://www.ncbi.nlm.nih.gov/pubmed/26998708.

    Article  Google Scholar 

  36. PCORnet The National Patient-Centered Clinical Research Network. PCORnet Common Data Model (CDM) - PCORnet [Internet]. 2018. https://pcornet.org/pcornet-common-data-model/.

  37. Sentinel Coordinating Center. Sentinel Initiative [Internet]. 2018. https://www.sentinelinitiative.org/.

  38. OHDSI Observational Health Data Sciences and Informatics. OHDSI – Observational Health Data Sciences and Informatics [Internet]. 2018. https://www.ohdsi.org/.

  39. Hripcsak G, Duke JD, Shah NH, Reich CG, Huser V, Schuemie MJ, et al. Observational health data sciences and informatics (OHDSI): opportunities for observational researchers. Stud Health Technol Inform. 2015;216:574.

    PubMed  PubMed Central  Google Scholar 

  40. Overhage JM, Ryan PB, Reich CG, Hartzema AG, Stang PE. Validation of a common data model for active safety surveillance research. J Am Med Inform Assoc [Internet]. 2012;19:54–60. http://www.ncbi.nlm.nih.gov/pubmed/22037893.

    Article  Google Scholar 

  41. Krumholz HM, Ross JS, Presler AH, Egilman DS. What have we learnt from Vioxx? BMJ [Internet]. 2007;334:120–3. http://www.ncbi.nlm.nih.gov/pubmed/17235089.

    Article  Google Scholar 

  42. Ohno-Machado L, Kim J, Gabriel RA, Kuo GM, Hogarth MA. Genomics and electronic health record systems. Hum Mol Genet [Internet]. 2018;27:R48–55. https://academic.oup.com/hmg/article/27/R1/R48/4975618.

    Article  CAS  Google Scholar 

  43. Silvestris N, Ciliberto G, De Paoli P, Apolone G, Lavitrano ML, Pierotti MA, et al. Liquid dynamic medicine and N-of-1 clinical trials: a change of perspective in oncology research. J Exp Clin Cancer Res [Internet]. 2017;36:128. http://jeccr.biomedcentral.com/articles/10.1186/s13046-017-0598-x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Tachinardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mendonca, E., Tachinardi, U. (2020). Pragmatic Trials and New Informatics Methods to Supplement or Replace Phase IV Trials. In: Adam, T., Aliferis, C. (eds) Personalized and Precision Medicine Informatics. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-030-18626-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18626-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18625-8

  • Online ISBN: 978-3-030-18626-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics