Skip to main content

Homomorphic Secret Sharing from Lattices Without FHE

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2019 (EUROCRYPT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11477))

Abstract

Homomorphic secret sharing (HSS) is an analog of somewhat- or fully homomorphic encryption (S/FHE) to the setting of secret sharing, with applications including succinct secure computation, private manipulation of remote databases, and more. While HSS can be viewed as a relaxation of S/FHE, the only constructions from lattice-based assumptions to date build atop specific forms of threshold or multi-key S/FHE. In this work, we present new techniques directly yielding efficient 2-party HSS for polynomial-size branching programs from a range of lattice-based encryption schemes, without S/FHE. More concretely, we avoid the costly key-switching and modulus-reduction steps used in S/FHE ciphertext multiplication, replacing them with a new distributed decryption procedure for performing “restricted” multiplications of an input with a partial computation value. Doing so requires new methods for handling the blowup of “noise” in ciphertexts in a distributed setting, and leverages several properties of lattice-based encryption schemes together with new tricks in share conversion.

The resulting schemes support a superpolynomial-size plaintext space and negligible correctness error, with share sizes comparable to SHE ciphertexts, but cost of homomorphic multiplication roughly one order of magnitude faster. Over certain rings, our HSS can further support some level of packed SIMD homomorphic operations. We demonstrate the practical efficiency of our schemes within two application settings, where we compare favorably with current best approaches: 2-server private database pattern-match queries, and secure 2-party computation of low-degree polynomials.

E. Boyle—Supported in part by ISF grant 1861/16, AFOSR Award FA9550-17-1-0069, and ERC grant 742754 (project NTSC).

L. Kohl—Supported by ERC Project PREP-CRYPTO (724307), by DFG grant HO 4534/2-2 and by a DAAD scholarship. This work was done in part while visiting the FACT Center at IDC Herzliya, Israel.

P. Scholl—Supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 731583 (SODA), and the Danish Independent Research Council under Grant-ID DFF-6108-00169 (FoCC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Namely, solving the Discrete Logarithm in a Interval problem with interval length R in time \(o(\sqrt{R})\).

  2. 2.

    Although the cost of bootstrapping has fallen dramatically in recent years [16, 17, 23, 32], the efficiency is still orders of magnitude worse than low-depth somewhat homomorphic encryption using SIMD operations.

  3. 3.

    So-called “third generation” SHE schemes based on GSW [28] have simpler homomorphic multiplication, but much larger ciphertexts that grow with \(\varOmega (N \log ^2 q)\) instead of \(O(N \log q)\), for (R)LWE dimension N and modulus q.

  4. 4.

    Note that nearly linear decryption generically implies existence of a public-key encryption procedure.

  5. 5.

    This can be decreased to \((d-1)\) \(R_q\)-elements communicated, as \(s_1=1 \in R_q\).

  6. 6.

    To simplify the analysis, we restrict the definition to 2-power cyclotomic rings. However, our construction can be generalized to arbitrary cyclotomics.

  7. 7.

    Choosing a sparse secret like this does incur a small loss in security, and only gives us a small gain in parameters for the HSS. The main reason we choose s like this is to allow a fair comparison with SHE schemes, which typically have to use sparse secrets to obtain reasonable parameters.

  8. 8.

    Using S/FHE alone instead of HSS allows for the stronger setting of single-server PIR. However, a major advantage of HSS with additive reconstruction is that shares across many rows can easily be combined, allowing more expressive queries with simpler computation.

  9. 9.

    Actually, these works use function secret-sharing [8] for point functions, which in this case is equivalent to HSS for the same class of functions.

  10. 10.

    Other queries such as returning the record identifier, or min/max and range queries can easily be supported with similar techniques, as previously shown in [6, 40].

References

  1. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_35

    Chapter  Google Scholar 

  2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_29

    Chapter  Google Scholar 

  3. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42

    Chapter  Google Scholar 

  4. Böhl, F., Davies, G.T., Hofheinz, D.: Encryption schemes secure under related-key and key-dependent message attacks. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 483–500. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_28

    Chapter  MATH  Google Scholar 

  5. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018 (2018)

    Google Scholar 

  6. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic secret sharing: optimizations and applications. In: ACM CCS 2017. ACM Press (2017)

    Google Scholar 

  7. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_19

    Chapter  Google Scholar 

  8. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_12

    Chapter  Google Scholar 

  9. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and extensions. In: ACM CCS 2016. ACM Press, October 2016

    Google Scholar 

  10. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 163–193. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_6

    Chapter  Google Scholar 

  11. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic secret sharing. In: ITCS 2018. LIPIcs, January 2018

    Google Scholar 

  12. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without FHE. Cryptology ePrint Archive, Report 2019/129. https://eprint.iacr.org/2019/129

  13. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50

    Chapter  Google Scholar 

  14. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ITCS 2012. ACM, January 2012

    Google Scholar 

  15. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  16. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_1

    Chapter  MATH  Google Scholar 

  17. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_14

    Chapter  Google Scholar 

  18. Cleve, R.: Towards optimal simulations of formulas by bounded-width programs. Comput. Complexity 1, 91–105 (1991). https://doi.org/10.1007/BF01200059

    Article  MathSciNet  MATH  Google Scholar 

  19. Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: an anonymous messaging system handling millions of users. In: 2015 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, May 2015

    Google Scholar 

  20. Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  21. Dinur, I., Keller, N., Klein, O.: An optimal distributed discrete log protocol with applications to homomorphic secret sharing. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 213–242. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_8

    Chapter  Google Scholar 

  22. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 93–122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_4

    Chapter  Google Scholar 

  23. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24

    Chapter  MATH  Google Scholar 

  24. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2012/144 (2012). http://eprint.iacr.org/2012/144

  25. Fazio, N., Gennaro, R., Jafarikhah, T., Skeith III, W.E.: Homomorphic secret sharing from Paillier encryption. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.) ProvSec 2017. LNCS, vol. 10592, pp. 381–399. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68637-0_23

    Chapter  Google Scholar 

  26. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st ACM STOC. ACM Press (2009)

    Google Scholar 

  27. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_49

    Chapter  Google Scholar 

  28. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  29. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_35

    Chapter  Google Scholar 

  30. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: 19th ACM STOC. ACM Press, May 1987

    Google Scholar 

  31. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homomorphic encryption scheme. Cryptology ePrint Archive, Report 2018/117 (2018). https://eprint.iacr.org/2018/117

  32. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_25

    Chapter  Google Scholar 

  33. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 158–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_6

    Chapter  Google Scholar 

  34. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Cryptogr. 75(3), 565–599 (2015)

    Article  MathSciNet  Google Scholar 

  35. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_3

    Chapter  Google Scholar 

  36. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  37. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: 37th ACM STOC. ACM Press, May 2005

    Google Scholar 

  38. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. In: Foundations of Secure Computation (Workshop, Georgia Institute of Technology, 1977), pp. 169–179. Academic, New York (1978)

    Google Scholar 

  39. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes Cryptogr. 71(1), 57–81 (2014). https://doi.org/10.1007/s10623-012-9720-4. ISSN 0925-1022

    Article  MATH  Google Scholar 

  40. Wang, F., Yun, C., Goldwasser, S., Vaikuntanathan, V., Zaharia, M.: Splinter: practical private queries on public data. In: 14th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2017, pp. 299–313 (2017)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers of Eurocrypt 2019 for their thorough and generous comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elette Boyle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boyle, E., Kohl, L., Scholl, P. (2019). Homomorphic Secret Sharing from Lattices Without FHE. In: Ishai, Y., Rijmen, V. (eds) Advances in Cryptology – EUROCRYPT 2019. EUROCRYPT 2019. Lecture Notes in Computer Science(), vol 11477. Springer, Cham. https://doi.org/10.1007/978-3-030-17656-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17656-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17655-6

  • Online ISBN: 978-3-030-17656-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics