Skip to main content

Monitoring the Microbial Burden in Manned Space Stations

  • Chapter
  • First Online:
Stress Challenges and Immunity in Space

Abstract

An impaired immunity generally weakens the host defense against microbial challenges and increases the vulnerability to infection. Especially in space, the consequences of an impaired immune system can further aggravate as astronauts, spending 100% of their time enclosed, face multiple stressors in an artificial environment with its own microbial population and dynamics. In this chapter, the knowledge of the environmental microbial burden in manned space stations and, in particular, the International Space Station ISS will be reviewed in terms of level and diversity. The implemented quality standards and monitoring strategies will be discussed in relation to the microbial burden and its impact on the crew’s well-being and ship safety. The consequences of impaired immunity to cope adequately with microbial contamination will increase the risk of infections in general and thereby endanger mission success. Microbial environmental quality and hazard control is therefore crucial to assure crew health. This might become even more important (1) when supplies from Earth are very restricted (cis-lunar stations or moon habitats) or almost impossible while on a mission to Mars and (2) since the interactions between the microbial environment, the human microbiome, and immune functions are receiving more attention and becoming more evidence-based.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez B, Lopez MM, Biosca EG (2008) Survival strategies and pathogenicity of Ralstonia solanacearum phylotype II subjected to prolonged starvation in environmental water microcosms. Microbiology 154(Pt 11):3590–3598

    Article  CAS  PubMed  Google Scholar 

  • Aviles H, Belay T, Fountain K, Vance M, Sonnenfeld G (2003) Increased susceptibility to Pseudomonas aeruginosa infection under hindlimb-unloading conditions. J Appl Physiol 95(1):73–80

    Article  PubMed  Google Scholar 

  • Bechy-Loizeau AL, Flandrois JP, Abaibou H (2015) Assessment of polycarbonate filter in a molecular analytical system for the microbiological quality monitoring of recycled waters onboard ISS. Life Sci Space Res (Amst) 6:29–35

    Article  Google Scholar 

  • Berry CA (1973) View of human problems to be addressed for long-duration space flights. Aerosp Med 44(10):1136–1146

    CAS  PubMed  Google Scholar 

  • Berry D, Xi C, Raskin L (2006) Microbial ecology of drinking water distribution systems. Curr Opin Biotechnol 17(3):297–302

    Article  CAS  PubMed  Google Scholar 

  • Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F (2011) Resistance of bacterial biofilms to disinfectants: a review. Biofouling 27(9):1017–1032

    Article  CAS  PubMed  Google Scholar 

  • Brief RS, Bernath T (1988) Indoor pollution: guidelines for prevention and control of microbiological respiratory hazards associated with air conditioning and ventilation system. Appl Ind Hyg 3(1):5–10

    Article  CAS  Google Scholar 

  • Bruce RJ, Ott CM, Skuratov VM, Pierson DL (2005) Microbial surveillance of potable water sources of the international Space Station. SAE Trans 114(1):283–292

    Google Scholar 

  • Castro VA, Thrasher AN, Healy M, Ott CM, Pierson DL (2004) Microbial characterization during the early habitation of the international Space Station. Microb Ecol 47(2):119–126

    Article  CAS  PubMed  Google Scholar 

  • Checinska A, Probst AJ, Vaishampayan P, White JR, Kumar D, Stepanov VG, Fox GE, Nilsson HR, Pierson DL, Perry J, Venkateswaran K (2015) Microbiomes of the dust particles collected from the international Space Station and spacecraft assembly facilities. Microbiome 3(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox CS (1995) Stability of airborne microbes and allergens. In: Cox CS, Wathes CM (eds) Bioaerosols handbook. CRC Press, Boca Rotan, Florida, pp 77–99

    Google Scholar 

  • Dacarro C, Picco AM, Grisoli P, Rodolfi M (2003) Determination of aerial microbiological contamination in scholastic sports environments. J Appl Microbiol 95(5):904–912

    Article  CAS  PubMed  Google Scholar 

  • Dawson DJ, Sartory DP (2000) Microbiological safety of water. Br Med Bull 56(1):74–83

    Article  CAS  PubMed  Google Scholar 

  • Duncan JM, Bogomolov VV, Castrucci F, Koike Y, Comtois JM, Sargsyan AE (2008) Organization and management of the international Space Station (ISS) multilateral medical operations. Acta Astronaut 63(7–10):1137–1147

    Article  Google Scholar 

  • Emtiazi F, Schwartz T, Marten SM, Krolla-Sidenstein P, Obst U (2004) Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration. Water Res 38(5):1197–1206

    Article  CAS  PubMed  Google Scholar 

  • Husman T (1996) Health effects of indoor-air microorganisms. Scand J Work Environ Health 22(1):5–13

    Article  CAS  PubMed  Google Scholar 

  • Ichijo T, Yamaguchi N, Tanigaki F, Shirakawa M, Nasu M (2016) Four-year bacterial monitoring in the international Space Station-Japanese experiment module "Kibo" with culture-independent approach. NPJ Microgravity 2:16007

    Article  PubMed  PubMed Central  Google Scholar 

  • ISS MORD (2006) SSP 50260 Revision C: ISS medical operations requirement document. Houston

    Google Scholar 

  • James JT, Parmet AJ, Pierson DL (2008) Aerospace toxicology and microbiology. In: Davis JR, Johnson R, Stepanek J, Fogarty JA (eds) Fundamentals of aerospace medicine, 4th edn. Lippincott, Williams & Wilkins, Philadelphia, pp 236–250

    Google Scholar 

  • Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Medigue C, Taghavi S, McCorkle S, Dunn J, van der Lelie D, Mergeay M (2010) The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 5(5):e10433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemp PC, Neumeister-Kemp HG (2005) Australian mould guideline: AMG-2005-1. Myco Logia Australia Pty Ltd

    Google Scholar 

  • Knox BP, Blachowicz A, Palmer JM, Romsdahl J, Huttenlocher A, Wang CC, Keller NP, Venkateswaran K (2016) Characterization of Aspergillus fumigatus isolates from air and surfaces of the international space station. mSphere 1(5):e00227–e00216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lachance PA (1997) How HACCP started. Food Technol 51:35

    Google Scholar 

  • McAlister MB, Kulakov LA, O'Hanlon JF, Larkin MJ, Ogden KL (2002) Survival and nutritional requirements of three bacteria isolated from ultrapure water. J Ind Microbiol Biotechnol 29(2):75–82

    Article  CAS  PubMed  Google Scholar 

  • Mehta SK, Pierson DL, Cooley H, Dubow R, Lugg D (2000) Epstein-Barr virus reactivation associated with diminished cell-mediated immunity in antarctic expeditioners. J Med Virol 61(2):235–240

    Article  CAS  PubMed  Google Scholar 

  • Mijnendonckx K, Provoost A, Ott CM, Venkateswaran K, Mahillon J, Leys N, Van Houdt R (2013) Characterization of the survival ability of Cupriavidus metallidurans and Ralstonia pickettii from space-related environments. Microb Ecol 65(2):347–360

    Article  CAS  PubMed  Google Scholar 

  • Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D, Mergeay M (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189(20):7417–7425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mora M, Perras A, Alekhova TA, Wink L, Krause R, Aleksandrova A, Novozhilova T, Moissl-Eichinger C (2016) Resilient microorganisms in dust samples of the international Space Station-survival of the adaptation specialists. Microbiome 4(1):65

    Article  PubMed  PubMed Central  Google Scholar 

  • Morawska L (2006) Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air 16(5):335–347

    Article  CAS  PubMed  Google Scholar 

  • Morris HC, Damon M, Maule J, Monaco LA, Wainwright N (2012) Rapid culture-independent microbial analysis aboard the international space station (ISS) stage two: quantifying three microbial biomarkers. Astrobiology 12(9):830–840

    Article  CAS  PubMed  Google Scholar 

  • Mulvey D, Redding P, Robertson C, Woodall C, Kingsmore P, Bedwell D, Dancer SJ (2011) Finding a benchmark for monitoring hospital cleanliness. J Hosp Infect 77(1):25–30

    Article  CAS  PubMed  Google Scholar 

  • NASA (2005a) International Space Station bacteria filter element service life evaluation. Houston

    Google Scholar 

  • NASA (2005b) MR050L, Microbial analysis of ISS surfaces Using the surface sampler kit (SSK). Houston

    Google Scholar 

  • NASA (2005c) MR051L, Microbial analysis of ISS water using the water microbiology kit (WMK) and the microbiology water analysis kit. Houston

    Google Scholar 

  • NASA (2005d) MR052L, Microbial analysis of ISS Air using the microbial air sampler (MAS). Houston

    Google Scholar 

  • NASA (2006) SD-T-0251, Microbiological specification and testing procedure for foods which are not commercially sterile, Houston

    Google Scholar 

  • Novikova ND (2004) Review of the knowledge of microbial contamination of the Russian manned spacecraft. Microb Ecol 47(2):127–132

    Article  CAS  PubMed  Google Scholar 

  • Novikova N, De Boever P, Poddubko S, Deshevaya E, Polikarpov N, Rakova N, Coninx I, Mergeay M (2006) Survey of environmental biocontamination on board the international Space Station. Res Microbiol 157(1):5–12

    Article  PubMed  Google Scholar 

  • Osman S, La Duc MT, Dekas A, Newcombe D, Venkateswaran K (2008) Microbial burden and diversity of commercial airline cabin air during short and long durations of travel. ISME J 2(5):482–497

    Article  CAS  PubMed  Google Scholar 

  • Perchonok M, Douglas G (2008) Risk factor of an inadequate food system. In: Human research evidence book. National Aeronautics and Space Administration, Houston

    Google Scholar 

  • Pierson DL, Botkin DJ, Bruce RJ, Castro VA, Smith MJ, Oubre CM, Ott CM (2012) Microbial monitoring of the international Space Station. In: Moldenhauer J (ed) Environmental monitoring: a comprehensive handbook, vol 6. PDA, Bethesda

    Google Scholar 

  • Salmela A, Kokkonen E, Kulmala I, Veijalainen A-M, Van Houdt R, Leys N, Berthier A, Ilyin V, Kharin S, Morozova J, Tikhomirov A, Pasanen P (2018) Production and characterization of bioaerosols for model validation in spacecraft environment. J Environ Sci 69:227–238

    Article  Google Scholar 

  • Satoh K, Nishiyama Y, Yamazaki T, Sugita T, Tsukii Y, Takatori K, Benno Y, Makimura K (2011) Microbe-I: fungal biota analyses of the Japanese experimental module KIBO of the international Space Station before launch and after being in orbit for about 460 days. Microbiol Immunol 55(12):823–829

    Article  CAS  PubMed  Google Scholar 

  • Schwendner P, Mahnert A, Koskinen K, Moissl-Eichinger C, Barczyk S, Wirth R, Berg G, Rettberg P (2017) Preparing for the crewed Mars journey: microbiota dynamics in the confined Mars500 habitat during simulated Mars flight and landing. Microbiome 5(1):129

    Article  PubMed  PubMed Central  Google Scholar 

  • Sessa R, Di PM, Schiavoni G, Santino I, Altieri A, Pinelli S, Del PM (2002) Microbiological indoor air quality in healthy buildings. New Microbiol 25(1):51–56

    CAS  PubMed  Google Scholar 

  • Stewart PS, Rayner J, Roe F, Rees WM (2001) Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates. J Appl Microbiol 91(3):525–532

    Article  CAS  PubMed  Google Scholar 

  • Straub JE, Plumlee DK, Schultz JR (2009) Chemical analysis results for potable water returned from ISS expeditions 14 and 15. SAE Int J Aerosp 1(1):556–577

    Article  Google Scholar 

  • Szewzyk U, Szewzyk R, Manz W, Schleifer KH (2000) Microbiological safety of drinking water. Annu Rev Microbiol 54:81–127

    Article  CAS  PubMed  Google Scholar 

  • Van Houdt R, Michiels CW (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109:1117–1131

    Article  PubMed  Google Scholar 

  • Van Houdt R, De Boever P, Coninx I, Le Calvez C, Dicasillati R, Mahillon J, Mergeay M, Leys N (2009a) Evaluation of the airborne bacterial population in the periodically confined Antarctic base Concordia. Microb Ecol 57(4):640–648

    Article  PubMed  Google Scholar 

  • Van Houdt R, Monchy S, Leys N, Mergeay M (2009b) New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Antonie Van Leeuwenhoek 96(2):205–226

    Article  CAS  PubMed  Google Scholar 

  • Van Houdt R, Mijnendonckx K, Leys N (2012) Microbial contamination monitoring and control during human space missions. Planet Space Sci 60(1):115–120

    Article  Google Scholar 

  • Venkateswaran K, Vaishampayan P, Cisneros J, Pierson DL, Rogers SO, Perry J (2014) International Space Station environmental microbiome - microbial inventories of ISS filter debris. Appl Microbiol Biotechnol 98(14):6453–6466

    Article  CAS  PubMed  Google Scholar 

  • Verhoeff A (1993) Biological particles in indoor environments. In: European collaborative action, indoor air quality and its impact on man, COST Project 613, Report N. 12, EUR 14988 EN1993. Luxembourg

    Google Scholar 

  • Volodina E, Nagolkin A, Fedotov A (2003) Air cleaning device for destruction of microbes based on electroporation effect. In: Wirtanen G, Salo S (eds) 34th R3-Nordic contamination control symposium, Turku, Finland. pp. 199–204

    Google Scholar 

  • WHO (2008) World Health Organization: Guidelines for drinking-water quality: incorporating 1st and 2nd addenda, vol 1, Recommendations. 3rd edn. Geneva

    Google Scholar 

  • Wingender J, Flemming HC (2004) Contamination potential of drinking water distribution network biofilms. Water Sci Technol 49(11–12):277–286

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi N, Roberts M, Castro S, Oubre C, Makimura K, Leys N, Grohmann E, Sugita T, Ichijo T, Nasu M (2014) Microbial monitoring of crewed habitats in space—current status and future perspectives. Microbes Environ 29(3):250–260

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Space Agency through the projects COMICS and EXANAM (together with the Belgian Science Policy), BIOSIS and BIOMODEXO, and by FP7 through the BIOSMHARS project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Van Houdt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Houdt, R., Leys, N. (2020). Monitoring the Microbial Burden in Manned Space Stations. In: Choukèr, A. (eds) Stress Challenges and Immunity in Space. Springer, Cham. https://doi.org/10.1007/978-3-030-16996-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16996-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16995-4

  • Online ISBN: 978-3-030-16996-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics