Skip to main content

Update on Precision Medicine in Breast Cancer

  • Chapter
  • First Online:
Precision Medicine in Cancer Therapy

Part of the book series: Cancer Treatment and Research ((CTAR,volume 178))

Abstract

Precision medicine approaches have found applications in the treatment of several tumor types and have led to rapid advancement in the number of available therapies for some difficult-to-treat diseases. In comparison to tumors like EGFR-mutated lung cancer, and BRAF-mutated melanoma for example, precision medicine in breast cancer is still in its infancy despite the much earlier identification of targets like ER and HER2. Though significant progress has been made in new therapies for hormone-receptor-positive and HER2-positive breast cancers, identification of molecular heterogeneity and lack of other valid reproducible targets in triple-negative breast cancer remain a challenge. In this chapter, we outline the recent advances in technology and targeted treatments for breast cancer, the remaining challenges and ongoing efforts to address these to make precision medicine a reality for all breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellsworth RE et al (2017) Molecular heterogeneity in breast cancer: state of the science and implications for patient care. Semin Cell Dev Biol 64:65–72

    Article  CAS  Google Scholar 

  2. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  Google Scholar 

  3. Curtis C et al (2012) The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 486(7403):346–352

    Article  CAS  Google Scholar 

  4. Lerner HJ et al (1976) Phase II study of tamoxifen: report of 74 patients with stage IV breast cancer. Cancer Treat Rep 60(10):1431–1435

    CAS  PubMed  Google Scholar 

  5. Wiggans RG et al (1979) Phase-II trial of tamoxifen in advanced breast cancer. Cancer Chemother Pharmacol 3(1):45–48

    Article  CAS  Google Scholar 

  6. Gradishar WJ et al (2015) NCCN guidelines insights breast cancer, version 1.2016. J Natl Compr Canc Netw 13(12):1475–1485

    Google Scholar 

  7. Early Breast Cancer Trialists’ Collaborative Group (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365(9472):1687–717

    Google Scholar 

  8. Slamon DJ et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792

    Article  CAS  Google Scholar 

  9. Baselga J et al (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366(2):109–119

    Article  CAS  Google Scholar 

  10. Cardoso F et al (2014) ESO-ESMO 2nd international consensus guidelines for advanced breast cancer (ABC2). Breast 23(5):489–502

    Article  CAS  Google Scholar 

  11. Wilken JA, Maihle NJ (2010) Primary trastuzumab resistance: new tricks for an old drug. Ann NY Acad Sci 1210:53–65

    Article  CAS  Google Scholar 

  12. Robinson DR et al (2013) Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet 45(12):1446–1451

    Article  CAS  Google Scholar 

  13. Chandarlapaty S et al (2016) Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer: a secondary analysis of the BOLERO-2 clinical trial. JAMA Oncol 2(10):1310–1315

    Article  Google Scholar 

  14. Fribbens C et al (2016) Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer. J Clin Oncol 34(25):2961–2968

    Article  CAS  Google Scholar 

  15. Turner N, Tutt A, Ashworth A (2004) Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4(10):814–819

    Article  CAS  Google Scholar 

  16. Thangavel C et al (2011) Therapeutically activating RB: reestablishing cell cycle control in endocrine therapy-resistant breast cancer. Endocr Relat Cancer 18(3):333–345

    Article  CAS  Google Scholar 

  17. Finn RS et al (2016) Palbociclib and letrozole in advanced breast cancer. N Engl J Med 375(20):1925–1936

    Article  CAS  Google Scholar 

  18. Goetz MP et al (2017) MONARCH 3: abemaciclib as initial therapy for advanced breast cancer. J Clin Oncol 35(32):3638–3646

    Article  CAS  Google Scholar 

  19. Hortobagyi GN et al (2016) Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med 375(18):1738–1748

    Article  CAS  Google Scholar 

  20. Cristofanilli M et al (2016) Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol 17(4):425–439

    Article  CAS  Google Scholar 

  21. George W, Sledge J et al (2017) MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2− advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol 35(25):2875–2884

    Article  Google Scholar 

  22. Dickler MN et al (2017) MONARCH 1, a phase 2 study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2− metastatic breast cancer. Clin Cancer Res

    Google Scholar 

  23. Beeram M et al (2007) Akt-induced endocrine therapy resistance is reversed by inhibition of mTOR signaling. Ann Oncol 18(8):1323–1328

    Article  CAS  Google Scholar 

  24. Sueta A et al (2014) An integrative analysis of PIK3CA mutation, PTEN, and INPP4B expression in terms of trastuzumab efficacy in HER2-positive breast cancer. PLoS ONE 9(12):e116054

    Article  Google Scholar 

  25. Baselga J et al (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366(6):520–529

    Article  CAS  Google Scholar 

  26. Andre F et al (2014) Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol 15(6):580–591

    Article  CAS  Google Scholar 

  27. Hurvitz SA et al (2015) Combination of everolimus with trastuzumab plus paclitaxel as first-line treatment for patients with HER2-positive advanced breast cancer (BOLERO-1): a phase 3, randomised, double-blind, multicentre trial. Lancet Oncol 16(7):816–829

    Article  CAS  Google Scholar 

  28. Andre F et al (2016) Molecular alterations and everolimus efficacy in human epidermal growth factor receptor 2-overexpressing metastatic breast cancers: combined exploratory biomarker analysis from BOLERO-1 and BOLERO-3. J Clin Oncol 34(18):2115–2124

    Article  Google Scholar 

  29. Baselga J et al (2017) Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 18(7):904–916

    Article  CAS  Google Scholar 

  30. Di Leo A et al (2018) Buparlisib plus fulvestrant in postmenopausal women with hormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 19(1):87–100

    Article  Google Scholar 

  31. Baselga J, Dent SF, Cortés J, Im Y-H, Diéras V, Harbeck N, Krop IE, Verma S, Wilson TR, Jin H, Wang L, Schimmoller F, Hsu JY, He J, DeLaurentiis M, Drullinsky P, Jacot W (2018) Phase III study of taselisib (GDC-0032) + fulvestrant (FULV) versus FULV in patients (pts) with estrogen receptor (ER)-positive, PIK3CA-mutant (MUT), locally advanced or metastatic breast cancer (MBC): primary analysis from SANDPIPER. In: 2018 ASCO annual meeting

    Google Scholar 

  32. Conley BA, Chen AP, O’Dwyer PJ, Arteaga CL, Hamilton SR, Williams PM, Little RF, Takebe N, Patton D, Sazali K, Zhang J, Zwiebel JA, Mitchell EP, Gray RJ, McShane L, Li S, Rubinstein L, Flaherty K (2016) NCI-MATCH (Molecular analysis for therapy choice)—a national signal finding trial. In: 2016 ASCO annual meeting

    Google Scholar 

  33. Azad N, Overman M, Gray R, Schoenfeld J, Arteaga C, Coffey B, Patton D, Li S, McShane L, Rubenstein L, Harris L, Comis R, Abrams J, Williams PM, Mitchell E, Zweibel J, Sharon E, Streicher H, Dwyer PJ, Hamilton S, Conley B, Chen AP, Flaherty K (2017) Nivolumab in mismatch-repair deficient (MMR-d) cancers: NCI-MATCH Trial (Molecular analysis for therapy choice) arm Z1D preliminary results. In: SITC 2017

    Google Scholar 

  34. Schwaederle M et al (2015) Impact of precision medicine in diverse cancers: a meta-analysis of phase II clinical trials. J Clin Oncol 33(32):3817–3825

    Article  CAS  Google Scholar 

  35. del Rivero J, Kohn EC (2017) PARP inhibitors: the cornerstone of DNA repair-targeted therapies. Oncology (Williston Park) 31(4):265–273

    Google Scholar 

  36. Livraghi L, Garber JE (2015) PARP inhibitors in the management of breast cancer: current data and future prospects. BMC Med 13:188

    Article  Google Scholar 

  37. Robson M et al (2017) Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 377(6):523–533

    Article  CAS  Google Scholar 

  38. Litton JK et al (2017) A feasibility study of neoadjuvant talazoparib for operable breast cancer patients with a germline BRCA mutation demonstrates marked activity. NPJ Breast Cancer 3:49

    Article  CAS  Google Scholar 

  39. Konstantinopoulos PA et al (2010) Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. J Clin Oncol 28(22):3555–3561

    Article  CAS  Google Scholar 

  40. Telli ML et al (2016) Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res 22(15):3764–3773

    Article  CAS  Google Scholar 

  41. Tutt A, Ellis P, Kilbum L (2014) TNT: a randomized phase III trial of carboplatin compared with docetaxel for patients with metastatic or recurrent locally advanced triple negative or BRCA 1/2 breast cancer. In: 2014 San Antonio breast cancer symposium

    Google Scholar 

  42. Verma S et al (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367(19):1783–1791

    Article  CAS  Google Scholar 

  43. Perez EA et al (2017) Trastuzumab emtansine with or without pertuzumab versus trastuzumab plus taxane for human epidermal growth factor receptor 2-positive, advanced breast cancer: primary results from the phase III MARIANNE study. J Clin Oncol 35(2):141–148

    Article  CAS  Google Scholar 

  44. Bardia A, Vahdat LT, Diamond J, Kalinsky K, O’Shaughnessy J, Moroose RL, Isakoff SJ, Tolaney SM, Santin AD, Abramson V, Shah NC, Govindan SV, Maliakal P, Sharkey RM, Wegener WA, Goldenberg DM, Mayer IA (2017) Sacituzumab govitecan (IMMU-132), an anti-Trop-2-SN-38 antibody-drug conjugate, as ≥3rd-line therapeutic option for patients with relapsed/refractory metastatic triple-negative breast cancer (mTNBC): efficacy results. In: 2017 San Antonio breast cancer symposium

    Google Scholar 

  45. Trail PA, Dubowchik GM, Lowinger TB (2018) Antibody drug conjugates for treatment of breast cancer: novel targets and diverse approaches in ADC design. Pharmacol Ther 181:126–142

    Article  CAS  Google Scholar 

  46. Alsaab HO et al (2017) PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 8:561

    Article  Google Scholar 

  47. Nanda R et al (2016) Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol 34(21):2460–2467

    Article  CAS  Google Scholar 

  48. Adams S et al (2016) Phase Ib trial of atezolizumab in combination with nab-paclitaxel in patients with metastatic triple-negative breast cancer (mTNBC). J Clin Oncol 34(15_suppl):1009

    Article  Google Scholar 

  49. Tolaney S et al (2018) Abstract PD6-13: Phase 1b/2 study to evaluate eribulin mesylate in combination with pembrolizumab in patients with metastatic triple-negative breast cancer. Cancer Res 78(4 Supplement):PD6-13

    Google Scholar 

  50. Rugo HS et al (2018) Safety and antitumor activity of pembrolizumab in patients with estrogen receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer. Clin Cancer Res 24(12):2804–2811

    Article  CAS  Google Scholar 

  51. Tolaney S et al (2017) Abstract P5-15-02: Phase 1b/2 study to evaluate eribulin mesylate in combination with pembrolizumab in patients with metastatic triple-negative breast cancer. Cancer Res 77(4 Supplement):P5-15-02

    Google Scholar 

  52. Schmid P, Cruz C, Braiteh FS, Eder JP, Tolaney S, Kuter I, Nanda R, Chung C, Cassier P, Delord J-P, Gordon M, Li Y, Liu B, O’Hear C, Fasso M, Molinero L, Emens LA (2017) Atezolizumab in metastatic TNBC (mTNBC): long-term clinical outcomes and biomarker analyses. In: 2017 AACR annual meeting

    Google Scholar 

  53. Dirix LY et al (2018) Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN solid tumor study. Breast Cancer Res Treat 167(3):671–686

    Article  CAS  Google Scholar 

  54. Kwa MJ, Adams S (2018) Checkpoint inhibitors in triple-negative breast cancer (TNBC): Where to go from here. Cancer 124(10):2086–2103

    Article  Google Scholar 

  55. Hendrickx W et al (2017) Identification of genetic determinants of breast cancer immune phenotypes by integrative genome-scale analysis. Oncoimmunology 6(2):e1253654

    Article  Google Scholar 

  56. Rugo H et al (2018) Abstract P1-09-01: A phase 1b study of abemaciclib plus pembrolizumab for patients with hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer (MBC). Cancer Res 78(4 Supplement):P1-09-01

    Google Scholar 

  57. Vinayak S et al (2018) TOPACIO/Keynote-162: niraparib plus pembrolizumab in patients (pts) with metastatic triple-negative breast cancer (TNBC), a phase 2 trial. J Clin Oncol 36(15):abstr 1011

    Google Scholar 

  58. Santa-Maria CA et al (2018) A pilot study of durvalumab and tremelimumab and immunogenomic dynamics in metastatic breast cancer. Oncotarget 9(27):18985–18996

    Article  Google Scholar 

  59. Adjuvant therapy for breast cancer (2000) NIH Consens Statement 17(4):1–35

    Google Scholar 

  60. Paik S et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826

    Article  CAS  Google Scholar 

  61. Sparano JA et al (2015) Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med 373(21):2005–2014

    Article  CAS  Google Scholar 

  62. Albain KS et al (2010) Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol 11(1):55–65

    Article  CAS  Google Scholar 

  63. Nitz U et al (2017) Reducing chemotherapy use in clinically high-risk, genomically low-risk pN0 and pN1 early breast cancer patients: five-year data from the prospective, randomised phase 3 West German Study Group (WSG) PlanB trial. Breast Cancer Res Treat 165(3):573–583

    Article  CAS  Google Scholar 

  64. Roberts MC et al (2017) Breast cancer-specific survival in patients with lymph node-positive hormone receptor-positive invasive breast cancer and oncotype DX recurrence score results in the SEER database. Breast Cancer Res Treat 163(2):303–310

    Article  Google Scholar 

  65. Albain KS et al (2010) Prognostic and predictive value of the 21-gene recurrence score assay in a randomized trial of chemotherapy for post-menopausal, node-positive, estrogen receptor-positive breast cancer. Lancet Oncol 11(1):55–65

    Google Scholar 

  66. Van ‘t Veer LJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536

    Google Scholar 

  67. van de Vijver MJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009

    Article  Google Scholar 

  68. Cardoso F et al (2016) 70-Gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med 375(8):717–729

    Article  CAS  Google Scholar 

  69. Sestak I et al (2018) Comparison of the performance of 6 prognostic signatures for estrogen receptor-positive breast cancer: a secondary analysis of a randomized clinical trial. JAMA Oncol

    Google Scholar 

  70. Sgroi DC et al (2013) Prediction of late distant recurrence in patients with oestrogen-receptor-positive breast cancer: a prospective comparison of the breast-cancer index (BCI) assay, 21-gene recurrence score, and IHC4 in the TransATAC study population. Lancet Oncol 14(11):1067–1076

    Article  Google Scholar 

  71. Cameron D et al (2017) 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial. Lancet 389(10075):1195–1205

    Article  CAS  Google Scholar 

  72. Perez EA et al (2014) Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol 32(33):3744–3752

    Article  CAS  Google Scholar 

  73. Slamon, D et al (2016) Abstract S5-04: Ten year follow-up of BCIRG-006 comparing doxorubicin plus cyclophosphamide followed by docetaxel (AC → T) with doxorubicin plus cyclophosphamide followed by docetaxel and trastuzumab (AC → TH) with docetaxel, carboplatin and trastuzumab (TCH) in HER2+ early breast cancer. Cancer Res 76(4 Supplement):S5-04

    Google Scholar 

  74. Gianni L et al (2016) 5-year analysis of neoadjuvant pertuzumab and trastuzumab in patients with locally advanced, inflammatory, or early-stage HER2-positive breast cancer (NeoSphere): a multicentre, open-label, phase 2 randomised trial. Lancet Oncol 17(6):791–800

    Article  CAS  Google Scholar 

  75. von Minckwitz G et al (2017) Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N Engl J Med 377(2):122–131

    Article  Google Scholar 

  76. Schneeweiss A et al (2014) Evaluating the predictive value of biomarkers for efficacy outcomes in response to pertuzumab- and trastuzumab-based therapy: an exploratory analysis of the TRYPHAENA study. Breast Cancer Res 16(4):R73

    Article  Google Scholar 

  77. Prat A et al (2014) Research-based PAM50 subtype predictor identifies higher responses and improved survival outcomes in HER2-positive breast cancer in the NOAH study. Clin Cancer Res 20(2):511–521

    Article  CAS  Google Scholar 

  78. Pogue-Geile KL et al (2013) Predicting degree of benefit from adjuvant trastuzumab in NSABP trial B-31. J Natl Cancer Inst 105(23):1782–1788

    Article  CAS  Google Scholar 

  79. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Google Scholar 

  80. Finn RS et al (2015) The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol 16(1):25–35

    Article  CAS  Google Scholar 

  81. Tripathy D et al, Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol

    Google Scholar 

  82. Andre F et al (2014) Comparative genomic hybridisation array and DNA sequencing to direct treatment of metastatic breast cancer: a multicentre, prospective trial (SAFIR01/UNICANCER). Lancet Oncol 15(3):267–274

    Article  CAS  Google Scholar 

  83. Massard C et al (2017) High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: results of the MOSCATO 01 trial. Cancer Discov 7(6):586–595

    Article  CAS  Google Scholar 

  84. Meric-Bernstam F et al (2015) Feasibility of large-scale genomic testing to facilitate enrollment onto genomically matched clinical trials. J Clin Oncol 33(25):2753–2762

    Article  Google Scholar 

  85. Pezo RC et al (2018) Impact of multi-gene mutational profiling on clinical trial outcomes in metastatic breast cancer. Breast Cancer Res Treat 168(1):159–168

    Article  CAS  Google Scholar 

  86. Von Hoff DD et al (2010) Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol 28(33):4877–4883

    Article  Google Scholar 

  87. Le Tourneau C et al (2015) Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol 16(13):1324–1334

    Article  Google Scholar 

  88. Jameson GS et al (2014) A pilot study utilizing multi-omic molecular profiling to find potential targets and select individualized treatments for patients with previously treated metastatic breast cancer. Breast Cancer Res Treat 147(3):579–588

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasgit C. Sachdev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sachdev, J.C., Sandoval, A.C., Jahanzeb, M. (2019). Update on Precision Medicine in Breast Cancer. In: Von Hoff, D., Han, H. (eds) Precision Medicine in Cancer Therapy . Cancer Treatment and Research, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-030-16391-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16391-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16390-7

  • Online ISBN: 978-3-030-16391-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics