Skip to main content

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 160))

Abstract

In recent years swarm intelligence emulate the behavior of insects or animal. In this chapter, an optimization algorithm called Locust Search (LS) is presented. The LS is inspired of the behavior of the locust swarms. In the algorithm consider two different behaviors: solitary and social. This tow types of behavior interact with each other in ways to allow find solution to a complex optimization problem. In order to illustrate the efficiency and robustness the LS was compared with other well-known optimization algorithms. The algorithm was proved with several benchmark functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press Inc., New York (1999)

    MATH  Google Scholar 

  2. Kassabalidis, I., El-Sharkawi, M.A., Marks, R.J. II, Arabshahi, P., Gray, A.A.: Swarm intelligence for routing in communication networks. In: Global Telecommunications Conference, GLOBECOM ’01, 6, IEEE, pp. 3613–3617 (2001)

    Google Scholar 

  3. Kennedy, J., & Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (Dec. 1995)

    Google Scholar 

  4. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report-TR06. Engineering Faculty, Computer Engineering Department, Erciyes University (2005)

    Google Scholar 

  5. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22(3), 52–67 (2002)

    Article  MathSciNet  Google Scholar 

  6. Hossein, A., Hossein-Alavi, A.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17, 4831–4845 (2012)

    Article  MathSciNet  Google Scholar 

  7. Yang, X.S.: Engineering optimization: an introduction with metaheuristic applications. Wiley, New York (2010)

    Google Scholar 

  8. Yang, X.S., Deb, S.: Proceedings of World Congress on Nature & Biologically Inspired Computing. IEEE Publications, India, pp. 210–214 (2009)

    Google Scholar 

  9. Cuevas, E., Cienfuegos, M., Zaldívar, D., Pérez-Cisneros, M.: A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 40(16), 6374–6384 (2013)

    Article  Google Scholar 

  10. Cuevas, E., González, M., Zaldivar, D., Pérez-Cisneros, M., García, G.: An algorithm for global optimization inspired by collective animal behaviour. Discrete Dynamics in Nature and Society 2012, art. no. 638275

    Google Scholar 

  11. Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global optimisation over continuous spaces. Technical Report TR-95–012, ICSI, Berkeley, CA (1995)

    Google Scholar 

  12. Bonabeau, E.: Social insect colonies as complex adaptive systems. Ecosystems 1, 437–443 (1998)

    Article  Google Scholar 

  13. Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., Tian, Q.: Self-adaptive learning based particle swarm optimization. Inf. Sci. 181(20), 4515–4538 (2011)

    Article  MathSciNet  Google Scholar 

  14. Tvrdík, Josef: Adaptation in differential evolution: a numerical comparison. Appl. Soft Comput. 9(3), 1149–1155 (2009)

    Article  MathSciNet  Google Scholar 

  15. Wang, H., Sun, H., Li, C., Rahnamayan, S., Jeng-shyang, P.: Diversity enhanced particle swarm optimization with neighborhood. Inf. Sci. 223, 119–135 (2013)

    Article  MathSciNet  Google Scholar 

  16. Gong, Wenyin, Fialho, Álvaro, Cai, Zhihua, Li, Hui: Adaptive strategy selection in differential evolution for numerical optimization: an empirical study. Inf. Sci. 181(24), 5364–5386 (2011)

    Article  MathSciNet  Google Scholar 

  17. Gordon, D.: The organization of work in social insect colonies. Complexity 8(1), 43–46 (2003)

    Article  Google Scholar 

  18. Kizaki, Shinya, Katori, Makoto: A Stochastic lattice model for locust outbreak. Phys. A 266, 339–342 (1999)

    Article  Google Scholar 

  19. Rogers, Stephen M., Cullen, Darron A., Anstey, Michael L., Burrows, Malcolm, Dodgson, Tim, Matheson, Tom, Ott, Swidbert R., Stettin, Katja, Sword, Gregory A., Despland, Emma, Simpson, Stephen J.: Rapid behavioural gregarization in the desert locust, Schistocerca gregaria entails synchronous changes in both activity and attraction to conspecifics. J. Insect Physiol. 65, 9–26 (2014)

    Article  Google Scholar 

  20. Topaz, C.M., Bernoff, A.J., Logan, S., Toolson, W.: A model for rolling swarms of locusts. Eur. Phys. J. Special Topics 157, 93–109 (2008)

    Article  Google Scholar 

  21. Topaz, C.M., D’Orsogna, M.R., Edelstein-Keshet, L., Bernoff, A.J.: Locust dynamics: behavioral phase change and swarming. PLOS Computational Biology 8(8), 1–11

    Google Scholar 

  22. Oster, G., Wilson, E.: Caste and Ecology in the Social Insects. N.J. Princeton University Press, Princeton (1978)

    Google Scholar 

  23. Hölldobler, B., Wilson, E.O.: Journey to the Ants: A Story of Scientific Exploration (1994). ISBN 0-674-48525-4

    Google Scholar 

  24. Hölldobler, B., Wilson, E.O.: The Ants. Harvard University Press (1990). ISBN 0-674-04075-9

    Google Scholar 

  25. Tanaka, Seiji, Nishide, Yudai: Behavioral phase shift in nymphs of the desert locust, Schistocerca gregaria: Special attention to attraction/avoidance behaviors and the role of serotonin. J. Insect Physiol. 59, 101–112 (2013)

    Article  Google Scholar 

  26. Gaten, Edward, Huston, Stephen J., Dowse, Harold B., Matheson, Tom: Solitary and gregarious locusts differ in circadian rhythmicity of a visual output neuron. J. Biol. Rhythms 27(3), 196–205 (2012)

    Article  Google Scholar 

  27. Benaragama, Indika, Gray, John R.: Responses of a pair of flying locusts to lateral looming visual stimuli. J. Comp. Physiol. A. 200(8), 723–738 (2014)

    Article  Google Scholar 

  28. Michael G. Sergeev, Distribution patterns of grasshoppers and their kin in the boreal zone, vol. 2011, Article ID 324130, 9 pages (2011)

    Google Scholar 

  29. Ely, S.O., Njagi, P.G.N., Bashir, M.O., El-Amin, S.E.-T., Diel, A.H.: Behavioral activity patterns in adult solitarious desert locust, Schistocerca gregaria (Forskål). Psyche Volume 2011, Article ID 459315, 9 (2011)

    Google Scholar 

  30. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Beckington (2008)

    Google Scholar 

  31. Cuevas, E., Echavarría, A., Ramírez-Ortegón, M.A.: An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation. Appl. Intell. 40(2), 256–272 (2014)

    Article  Google Scholar 

  32. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Global Optim. 31(4), 635–672 (2005)

    Article  MathSciNet  Google Scholar 

  33. Chelouah, R., Siarry, P.: A continuous genetic algorithm designed for the global optimization of multimodal functions. J. Heurist. 6(2), 191–213 (2000)

    Article  Google Scholar 

  34. Herrera, F., Lozano, M., Sánchez, A.M.: A taxonomy for the crossover operator for real-coded genetic algorithms: an experimental study. Int. J. Intell. Syst. 18(3), 309–338 (2003)

    Article  Google Scholar 

  35. Laguna, M., Martí, R.: Experimental testing of advanced scatter search designs for global optimization of multimodal functions. J. Global Optim. 33(2), 235–255 (2005)

    Article  MathSciNet  Google Scholar 

  36. Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms with crossover hill-climbing. Evol. Comput. 12(3), 273–302 (2004)

    Article  Google Scholar 

  37. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17–41 (1981)

    Article  MathSciNet  Google Scholar 

  38. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)

    Article  MathSciNet  Google Scholar 

  39. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special session on real parameter optimization. J. Heurist. (2008). https://doi.org/10.1007/s10732-008-9080-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas .

Appendix: List of Benchmark Functions

Appendix: List of Benchmark Functions

In Table 5.5, n is the dimension of function, \(f_{opt}\) is the minimum value of the function, and S is a subset of \(R^{n}\). The optimum location \(({\mathbf{x}}_{opt} )\) for functions in Table 5.5 is in \([0]^{n}\), except for \(f_{5}\) with \({\mathbf{x}}_{opt}\) in \([1]^{n}\).

Table 5.5 Unimodal test functions

The optimum location \(({\mathbf{x}}_{opt} )\) for functions in Table 5.6, are in \([0]^{n}\), except for \(f_{8}\) in \([420.96]^{n}\) and \(f_{12}\)\(f_{13}\) in \([1]^{n}\).

Table 5.6 Multimodal test functions

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuevas, E., Fausto, F., González, A. (2020). The Locust Swarm Optimization Algorithm. In: New Advancements in Swarm Algorithms: Operators and Applications. Intelligent Systems Reference Library, vol 160. Springer, Cham. https://doi.org/10.1007/978-3-030-16339-6_5

Download citation

Publish with us

Policies and ethics