Skip to main content

Endophytic Bacillus Species Induce Systemic Resistance to Plant Diseases

  • Chapter
  • First Online:
Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol

Abstract

Bacillus species with antagonistic and plant growth-promoting activities have been used for biological agents as an alternative to agrochemicals for control of major diseases, but their mechanisms are still rudimentary and interesting. The mechanisms of induced systemic resistance (ISR), in endophytic Bacillus species that enhance activity of pattern recognition receptors (PRRs) through cellular or hormonal defense to the pathogen plays a crucial role in host resistance. The expression of microbial PRRs and its associated molecular pattern (MAMPs) through the induction mechanism has been conducted by the root-colonizing endophytic Bacillus species. This ISR by the Bacillus species is sometimes turned into primed induction to keep the plant silence and quiet; therefore, the defensive marker genes have been triggered early. Bacillus polymyxa, B. pumilus, B. coagulans, B. cereus, B. oryzicola YC7007, and B. velezensis YC7010 have been used successfully as biocontrol agents against diseases mainly on blast, sheath blight, bacterial blight, and bakanae of rice. Endophytic Bacillus bacteria induce systemic resistance by colonizing inside the root of the host plant against pathogens. This type of interaction is called induced systemic resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover + eBook
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Available as EPUB and PDF
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn IP, Lee SW, Suh SC (2007) Rhizobacteria-induced priming in Arabidopsis is dependent on ethylene, jasmonic acid, and NPRI. Mol Plant Microbe Interact 20:759–768

    Article  CAS  PubMed  Google Scholar 

  • Alqueres S, Meneses C, Rouws L, Rothballer M, Baldani I, Schmid M, Hartmann A (2013) The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus strain PAL5. Mol Plant Microbe Interact 26:937–945

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (1996) U.S. Environmental Protection Agency. Microbial pesticide test guidelines. OPPTS 885.0001. Overview for microbial pest control agents. EPA 712-C-96-280

    Google Scholar 

  • Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudyarova GR (2005) Ability of bacterium Bacillus subtilis produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209

    Article  CAS  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakker PAHM, Pieterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    Article  PubMed  Google Scholar 

  • Bhramaramba S, Nagamani A (2013) Antagonistic Trichoderma isolates to control bakanae pathogen of rice. Agric Sci Dig 33:104–108

    Google Scholar 

  • Bibi F, Chung EJ, Jeon CO, Chung YR (2011) Bacillus graminis sp. nov., an endophytic bacterium isolated from a coastal dune plant. Int J Syst Evol Microbiol 61:1567–1571

    Article  CAS  PubMed  Google Scholar 

  • Bibi F, Yasir M, Song GC, Lee SY, Chung YR (2012) Diversity and characterization of endophytic bacteria associated with tidal flat plants and their antagonistic effects on oomycetous plant pathogens. Plant Pathol J 28:20–31

    Article  CAS  Google Scholar 

  • Brodersen P, Petersen M, Nielsen HB, Zhu S, Newman MA, Shokat KM, Rietz S, Parker J, Mundy J (2006) Arabidopsis MAP kinase 4 regulates salicylic acid-and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 47:532–846

    Article  CAS  PubMed  Google Scholar 

  • Chester K (1933) The problem of acquired physiological immunity in plants. Q Rev Biol 8:129–151

    Article  Google Scholar 

  • Chung EJ, Hossain MT, Khan A, Kim KH, Jeon CO, Chung YR (2015) Bacillus oryzicola sp. nov., an endophytic bacterium isolated from the roots of rice with anti-microbial, plant-growth-promoting, and systemic resistance-inducing activities in rice. Plant Pathol J 31:152–164

    Article  PubMed  PubMed Central  Google Scholar 

  • Claus D, Berkeley RCW (1986) Genus Bacillus Cohn 1872. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1105–1139

    Google Scholar 

  • D’Mello JPF, Macdonald AMC, Postel D, Dijksma WTP, Dujardin A, Placinta CM (1998) Pesticide use and mycotoxin production in Fusarium and Aspergillus phytopathogens. Eur J Plant Pathol 104:741–751

    Article  Google Scholar 

  • De Vleesschauwer D, Djavaheri M, Bakker PA, Höfte M (2008) Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol 148:1996–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Vleesschauwer D, Van Buyten E, Satoh K, Balidion J, Mauleon R, Choi IR, Vera-Cruz C, Kikuchi S, Höfte M (2012) Brassinosteroids antagonize gibberellin and salicylate mediated root immunity in rice. Plant Physiol 158:1833–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doornbos RF, Geraats BPJ, Kuramae EE, Van Loon LC, Bakker PAHM (2011) Effects of jasmonic acid, ethylene, and salicylic acid signaling on the rhizosphere bacterial community of Arabidopsis thaliana. Mol Plant Microbe Interact 24:395–407

    Article  CAS  PubMed  Google Scholar 

  • Gnanamanickam SS, Mew TW (1992) Biological control of blast disease of rice (Oryza sativa, L.,) with antagonistic bacteria and its mediation by Pseudomonas antibiotics. Ann Phytopathol Soc Jpn 58:380–385

    Article  Google Scholar 

  • Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P (2017) Interplay between innate immunity and the plant microbiota. Annu Rev Phytopathol 55:565–589

    Article  CAS  PubMed  Google Scholar 

  • Harrach BD, Baltruschat H, Barna B, Fodor J, Kogel KH (2013) The mutualistic fungus Piriformospora indica protects barley roots from a loss of antioxidant capacity caused by the necrotrophic pathogen Fusarium culmorum. Mol Plant Microbe Interact 26:599–605

    Article  CAS  PubMed  Google Scholar 

  • Hossain MT, Khan A, Rashid HO, Chung YR (2019) A volatile producing endophytic Bacillus siamensis YC7012 promotes root development independent on auxin or ethylene/jasmonic acid pathway. Plant Soil:1–6. https://doi.org/10.1007/s11104-019-04015-y

  • Hossain MT, Khan A, Chung EJ, Rashid HO, Chung YR (2016) Biological control of rice bakanae by an endophytic Bacillus oryzicola YC7007. Plant Pathol J 32:228–242

    Google Scholar 

  • Hu X, Roberts DP, Maul JE, Emche SE, Liao X, Guo X, Li Y, McKenna LF, Buyer JS, Liu S (2011) Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations. Can J Microbiol 57:539–546

    Article  CAS  PubMed  Google Scholar 

  • Huffaker A, Pearce G, Veyrat N et al (2013) Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Proc Natl Acad Sci U S A 110:5707–5712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Miyake T, Nishigata K, Tateishi H, Teraoka T, Arie T (2012) Use of fluorescent proteins to visualize interactions between the bakanae disease pathogen Gibberella fujikuroi and the biocontrol agent Talaromyces sp. KNB-422. J Gen Plant Pathol 78:54–61

    Article  CAS  Google Scholar 

  • Kavitha S (2002) Strategies for management of rice blast and sheath blight with bacterial biocontrol agents in combination with major genes for disease resistance. PhD dissertation, University of Madras

    Google Scholar 

  • Khan A, Hossain MT, Park HC, Yun DJ, Shim SH, Chung YR (2016) Development of root system architecture of Arabidopsis thaliana in response to colonization by Martelella endophytica YC6887 depends on auxin signaling. Plant Soil 405:81–96

    Article  CAS  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 46:839–844

    Article  CAS  Google Scholar 

  • Kumar AS, Lakshmanan V, Caplan JL, Powell D, Czymmek KJ, Levia DF, Bais HP (2012) Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. Plant J 72:694–706

    Article  CAS  PubMed  Google Scholar 

  • Matic S, Spadaro D, Garibaldi A, Gullino ML (2014) Antagonistic yeasts and thermotherapy as seed treatments to control Fusarium fujikuroi on rice. Biol Control 73:59–67

    Article  Google Scholar 

  • McSpadden Gardener B (2010) Biocontrol of plant pathogens and plant growth promotion by Bacillus. In: Gisi U, Chet I, Gullino ML (eds) Recent developments in management of plant diseases, Plant pathology in the 21st century. Springer, Amsterdam, pp 71–79

    Chapter  Google Scholar 

  • Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH (2011) The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways. Mol Plant Microbe Interact 24:533–542

    Article  CAS  PubMed  Google Scholar 

  • Pal KK, McSpadden Gardener B (2006) Biological control of plant pathogens. Plant Health Instruct. https://doi.org/10.1094/PHI-A-2006-1117-02

  • Park WS, Choi HW, Han SS, Shin DB, Shim HK, Jung ES, Lee SW, Lim CK, Lee YH (2009) Control of bakanae disease of rice by seed soaking into the mixed solution of prochloraz and fludioxonil. Res Plant Dis 15:94–100

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Hoffland E, Van Pelt JA, Van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  • Ross AF (1961) Systemic acquired resistance by localized virus infection in plants. Virology 14:340–358

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM (2013) Promoting plant protection by root-associated microbes. Plant Pathol J 29:123–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Murphy JF, Mysore KS, Kloepper JW (2004a) Plant growth promoting rhizobacteria systemically protect Arabidopsis thaliana against cucumber mosaic virus by a salicylic acid and NPR1 independent and jasmonic acid dependent signaling pathway. Plant J 38:381–392

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004b) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saijo Y, Loo EP, Yasuda S (2018) Pattern recognition receptors and signaling in plant–microbe interactions. Plant J 93:592–613

    Article  CAS  PubMed  Google Scholar 

  • Stringlis IA, Proietti S, Hickman R, Van Verk MC, Zamioudis C, Pieterse CM (2018) Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant J 93:166–180

    Article  CAS  PubMed  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci 95:15107–15111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ton J, Pieterse CMJ, Van Loon LC (1999) Identification of a locus in Arabidopsis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv. tomato. Mol Plant Microbe Interact 12:911–918

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC (1982) Regulation of changes in proteins and enzymes associated with active defense against virus infection. In: Wood RKS (ed) Active defense mechanisms in plants, vol 1. Plenum Press, New York, pp 247–273

    Google Scholar 

  • Van Peer R, Schippers B (1992) Lipopolysaccharides of plant growth promoting Pseudomonas sp. strain WCS417r induces resistance in carnation to Fusarium wilt. Neth J Pl Path 98:129–139

    Google Scholar 

  • Velusamy P, Gnanamanickam SS (2003) Identification of 2,4-deacetylphloglucinol (DAPG) production by plant-associated bacteria and its role in suppression of rice bacterial blight in. India Curr Sci 85:1270–1273

    CAS  Google Scholar 

  • Walters D, Walsh D, Newton A, Lyon G (2005) Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95:1368–1373

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Gao F, Wu J, Dai J, Wei C, Li Y (2010) Arabidopsis putative deacetylase AtSRT2 regulates basal defense by suppressing PAD4, EDS5 and SID2 expression. Plant Cell Physiol 51:1291–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YR, Kim YC, Lee SW, Lee SW, An GG, Kim IS (2012) Involvement of an efflux transporter in prochloraz resistance of Fusarium fujikuroi CF245 causing rice bakanae disease. J Korean Soc Appl Biol Chem 55:571–574

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, M.T., Chung, Y.R. (2019). Endophytic Bacillus Species Induce Systemic Resistance to Plant Diseases. In: Islam, M., Rahman, M., Pandey, P., Boehme, M., Haesaert, G. (eds) Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol. Bacilli in Climate Resilient Agriculture and Bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-15175-1_9

Download citation

Publish with us

Policies and ethics