Skip to main content

Biocontrol of Plant Pathogens and Plant Growth Promotion by Bacillus

  • Chapter
  • First Online:
Recent Developments in Management of Plant Diseases

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 1))

Abstract

Numerous Bacillus strains have been investigated for their capacities to protect plants from pathogens and stimulate plant growth. Studying the diversity of these bacteria provides clues to the distinctiveness of beneficial strains and raises questions regarding the scale and evolutionary forces that led to the development of biocontrol activities. Soils harbor vast spore banks of Bacillus, subsets of which germinate, propagate or go dormant in patches varying size according to the availability of various resources. While the genus as a whole does not seem to be as competitive as some other genera, there do appear to be strains that are truly rhizosphere competent. Those that are will be well positioned to access resources and express activities that can lead to plant disease suppression and/or directly stimulate plant growth. It is now known that many different types of secreted products can affect both pathogens and plants in a variety of ways, all of which might lead to reductions in disease development. A greater understanding of this genus will help to accelerate the development and application of active strains and their products into biopesticidal products that improve crop quality and yields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson I, Sorokin A, Kapatral V, Reznik G, Bhattacharya A, Mikhailova N, Burd H, Joukov V, Kaznadzey D, Walunas T, D’Souza M, Larsen N, Pusch G, Liolios K, Grechkin Y, Lapidus A, Goltsman E, Chu L, Fonstein M, Ehrlich SD, Overbeek R, Kyrpides N, Ivanova N (2005) Comparative genome analysis of Bacillus cereus group genomes with Bacillus subtilis. FEMS Microbiol Lett 250:175–184

    Article  CAS  PubMed  Google Scholar 

  • Arias RS, Sagardoy MA, van Vuurde JWL (1999) Spatio-temporal distribution of naturally occurring Bacillus spp. and other bacteria on the phylloplane of soybean under field conditions. J Basic Microbiol 39:283–292

    Article  CAS  PubMed  Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    CAS  PubMed  Google Scholar 

  • Bai Y, Zhou X, Smith DL (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1781

    Article  Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ (2003) Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol 61:289–298

    Article  Google Scholar 

  • Camacho M, Santamaria C, Temprano F, Rodriguea-Navarro D, Daza A (2001) Co-inoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris L. Can J Microbiol 47:1058–1062

    Article  CAS  PubMed  Google Scholar 

  • Chen XH, Vater J, Piel J, Franke P, Scholz R, Schneider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter AW, Gottschalk G, Suessmuth RD, Borriss R et al (2006) Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J Bacteriol 188:4024–4036

    Article  CAS  PubMed  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Suessmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R et al (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Earl AM, Losick R, Kolter R (2008) Ecology and genomics of Bacillus subtilis. Trends Microbiol 16:269–275

    Article  CAS  PubMed  Google Scholar 

  • Fravel D (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Fritze D (2004) Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria. Phytopathology 94:1245–1248

    Article  PubMed  Google Scholar 

  • Garbeva P, van Veen JA, van Elsa JD (2003) Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microb Ecol 45:302–316

    Article  CAS  PubMed  Google Scholar 

  • Halverson LJ, Handelsman J (1991) Enhancement of soybean nodulation by Bacillus cereus UW85 in the field and in a growth chamber. Appl Environ Microbiol 57:2767–2770

    CAS  PubMed  Google Scholar 

  • Halverson LJ, Clayton MK, Handelsman J (1993) Population biology of Bacillus cereus UW85 in the rhizosphere of field-grown soybeans. Soil Biol Biochem 25:485–493

    Article  Google Scholar 

  • Heins SD, Manker DC, Jimenez DR, McCoy RJ, Marrone PG, Orjala JE (2003) Compositions and methods for controlling plant pests. Official Gazette of the United States Patent and Trademark Office Patents 1275(4)2003

    Google Scholar 

  • Heyrman J, Vanparys B, Logan Niall A; Balcaen An, Rodriguez-Diaz M, Felske A, De Vos Paul (2004) Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. Int J Syst Evol Microbiol 54:47–57

    Google Scholar 

  • Heyrman J, Rodriguez-Diaz MD, Joke F, Andreas L, Niall A, De Vos P (2005) Bacillus arenosi sp nov., Bacillus arvi sp nov. and Bacillus humi sp nov., isolated from soil. Int J Syst Evol Microbiol 55:111–117

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen BJ, Zidack NK, Larson BJ (2004) The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology 94:1272–1275

    Article  CAS  PubMed  Google Scholar 

  • Joshi R, McSpadden Gardener BB (2006) Identification of genes associated with pathogen inhibition in different strains B. subtilis. Phytopathology 96:145–154

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Ryu Choong-Min, Zhang Shouan (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Lian B, Prithiviraj B, Souleimanov A, Smith DL (2001) Evidence for the production of chemical compounds analogous to nod factor by the silicate bacterium Bacillus circulans GY92. Microbiol Res 156:289–292

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL, Sinclair JB (1992) Population dynamics of Bacillus megaterium strain B153-2-2 in the rhizosphere of soybean. Phytopathology 82:1297–1301

    Article  Google Scholar 

  • Mahafee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field grown cucumber (Cucumis sativus L.). Microb Ecol 34:210–223

    Article  Google Scholar 

  • Marrone PG (2007) Barriers to adoption of biological control agents and biological pesticides. In: CAB reviews: perspectives in agriculture, veterinary science, nutrition and natural resources. CABI: published online, ISSN 1749-8848, 2, No. 051

    Google Scholar 

  • Marten P, Smalla K, Berg G (2000) Genotypic and phenotypic differentiation of an antifungal biocontrol strain belonging to Bacillus subtilis. J Appl Microbiol 89:463–471

    Article  CAS  PubMed  Google Scholar 

  • Masson L, Erlandson M, Puzstai-Carey M, Brousseau R, Juarez-Perez V, Frutos R (1998) A holistic approach for determining the entomopathogenic potential of Bacillus thuringiensis strains. Appl Environ Microbiol 64:4782–4788

    CAS  PubMed  Google Scholar 

  • McSpadden Gardener B (2004) Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94:1252–1258

    Article  CAS  PubMed  Google Scholar 

  • McSpadden Gardener B, Weller D (2001) Changes in populations of rhizosphere bacteria associated with take-all disease of wheat. Appl and Environ Microbiol 67:4414–4425

    Article  CAS  Google Scholar 

  • McSpadden Gardener B, Gutierrez L, Joshi R, Edema R, Lutton E (2005) Distribution and biocontrol potential of phlD+ pseudomonads in corn and soybean fields. Phytopathology 95:715–724

    Article  CAS  PubMed  Google Scholar 

  • Medina A, Probanza A, Gutierrez Manero FJ, Azcon R (2003) Interactions of arbuscular-mycorrhizal fungi and Bacillus strains and their effects on plant growth, microbial rhizosphere activity and fungal biomass. Appl Soil Ecol 22:15–28

    Article  Google Scholar 

  • Nicholson WL (2002) Roles of Bacillus endospores in the environment. Cell Mol Life Sci 59:410–416

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides versatile weapon for plant disease control. Trends in microbiology 16:115–125

    Article  CAS  PubMed  Google Scholar 

  • Pinchuk IV, Bressollier P, Sorokulova IB, Verneuil B, Urdaci MC (2002) Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Res Microbiol 153:269–276

    Article  CAS  PubMed  Google Scholar 

  • Priest F (1993) Systematics and ecology of Bacillus. In: Bacillus subtilis and other Gram-positive bacteria, biochemistry, physiology, and molecular genetics. American Society for Microbiology Press, Washington, DC, pp 3–16

    Google Scholar 

  • Raffel SJ, Stabb EV, Milner JL, Handelsman J (1996) Genotypic and phenotypic analysis of zwittermicin A-producing strains of Bacillus cereus. Microbiology 142:3425–3436

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004a) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol (Rockville) 134:1017–1026

    Article  CAS  Google Scholar 

  • Ryu CM, Murphy JF, Mysore KS, Kloepper JW (2004b) Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant J 39:381–392

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Hu CH, Locy RD, Kloepper JW (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285–292

    Article  CAS  Google Scholar 

  • Simon HM, Smith KP, Dodsworth JA, Buenthner B, Handelsman J, Goodman RM (2001) Influence of tomato genotype on growth of inoculated and indigenous bacteria in the spermosphere. Appl Environ Microbiol 67:514–520

    Article  CAS  PubMed  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G et al (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    Article  CAS  PubMed  Google Scholar 

  • Stabb EV, Jacobson LM, Handelsman J (1994) Zwittermicin A-producing strains of Bacillus cereus from diverse soils. Appl Environ Microbiol 60:4404–4412

    CAS  PubMed  Google Scholar 

  • Stahly DP, Andrews RE, Yousten AA (1992) The genus Bacillus – insect pathogens. In: The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 2nd edn. Springer, pp 1697–1745

    Google Scholar 

  • Toro M, Azcon R, Barea JM (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    CAS  PubMed  Google Scholar 

  • Zawadski P, Riley MA, Cohan FM (1996) Homology of nearly all plasmids infecting three Bacillus species. J Bacteriol 178:191–198

    Google Scholar 

  • Zheng XY, Sinclair JB (2000) The effects of traits of Bacillus megaterium on seed and root colonization and their correlation with the suppression of Rhizoctonia root rot of soybean. Biocontrol 45:223–243

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian B. McSpadden Gardener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gardener, B.B.M. (2010). Biocontrol of Plant Pathogens and Plant Growth Promotion by Bacillus . In: Gisi, U., Chet, I., Gullino, M. (eds) Recent Developments in Management of Plant Diseases. Plant Pathology in the 21st Century, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8804-9_6

Download citation

Publish with us

Policies and ethics