Skip to main content

Targeted Epigenome Editing of Plant Defense Genes via CRISPR Activation (CRISPRa)

  • Chapter
  • First Online:
Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications

Abstract

Crop protection plays a central role in maintaining and increasing crop productivity. Many pathogens continue to affect crop production, however, and losses generated by pests must be halted. Thus, if farming is to support the human population, additional viable strategies for crop production and improved integrated pest management systems must be developed. Genome editing is an alternative to conventional breeding that can facilitate the molecular breeding of crops with desired properties. We propose here the implementation of targeted modification of epigenetic marks (epigenome editing via CRISPR activation or CRISPRa) to activate plant defense genes to confer resistance against pathogen attack. Work on CRISPRa in plants is lacking, although its potential application to crops is one of the greatest challenges in the field. Future exploitation of this approach in crop improvement programs will reduce important economic losses and benefit society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9(1):1911

    Google Scholar 

  • Alvarez-Venegas R, Pien S, Sadder M et al (2003) ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes. Curr Biol 13(8):627–637

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Venegas R, Abdallat AA, Guo M et al (2007) Epigenetic control of a transcription factor at the cross section of two antagonistic pathways. Epigenetics 2:106–113

    Article  PubMed  Google Scholar 

  • Bai Y, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot 100(5):1085–1094

    Article  PubMed  PubMed Central  Google Scholar 

  • Barakate A, Stephens J (2016) An overview of CRISPR-based tools and their improvements: new opportunities in understanding plant-pathogen interactions for better crop protection. Front Plant Sci 7:765

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    CAS  PubMed  Google Scholar 

  • Bi H, Yang B (2017) Gene editing with TALEN and CRISPR/Cas in rice. In: Weeks DP, Yang B (eds) Gene editing in plants. Progress in molecular biology and translational science, vol 149. Elsevier, pp 81–98

    Google Scholar 

  • Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    Article  CAS  PubMed  Google Scholar 

  • Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-Type III effectors. Science 326(5959):1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33(1):41–52

    Article  CAS  PubMed  Google Scholar 

  • Breen S, Williams SJ, Outram M et al (2017) Emerging insights into the functions of pathogenesis-related protein 1. Trends Plant Sci 22(10):871–879

    Article  CAS  PubMed  Google Scholar 

  • Briney A (2018) All you wanted to know about the green revolution. Available via https://www.thoughtco.com/green-revolution-overview-1434948

  • Bruce TJA (2010) Tackling the threat to food security caused by crop pests in the new millennium. Food Sec 2:133–141

    Article  Google Scholar 

  • Bruce TJA, Smart LE, Birch ANE et al (2016) Prospects for plant defence activators and biocontrol in IPM – concepts and lessons learnt so far. Crop Prot 97:128–134

    Article  Google Scholar 

  • Chandrasegaran S, Carroll D (2016) Origins of programmable nucleases for genome engineering. J Mol Biol 428(5 Pt B):963–989

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary K, Chattopadhyay A, Pratap D (2018) The evolution of CRISPR/Cas9 and their cousins: hope or hype? Biotechnol Lett 40(3):465–477

    Article  CAS  Google Scholar 

  • Chavez A, Scheiman J, Vora S et al (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12(4):326–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng AW, Wang H, Yang H et al (2013) Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23(10):1163–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen Y, Vaknin M, Mauch-Mani B (2016) BABA-induced resistance: milestones along a 55-year journey. Phytoparasitica 44:513

    Article  CAS  Google Scholar 

  • DiCarlo JE, Norville JE, Mali P et al (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doench JG, Fusi N, Sullender M et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34(2):184–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096

    Article  PubMed  CAS  Google Scholar 

  • Endo A, Masafumi M, Kaya H et al (2016) Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci Rep 6:38169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z, Zhang B, Ding W et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonfara I, Richter H, Bratovic M et al (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532:517–521

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Zhao Y (2014) Self-processing of ribozyme-flanked RNAs into guide RNAsin vitroandin vivofor CRISPR-mediated genome editing. J Integr Plant Biol 56(4):343–349

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Xiong X, Wong S et al (2016) Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat Methods 13(12):1043–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasiunas G, Barrangou R, Horvath P et al (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109:E2579–E2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert LA, Larson MH, Morsut L et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Ma D, Huang R et al (2017) An inducible CRISPR-ON system for controllable gene activation in human pluripotent stem cells. Protein Cell 8(5):379–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Yu Y, Law JA et al (2010) SET DOMAIN GROUP2 is the major histone H3 lysine 4 trimethyltransferase in Arabidopsis. Proc Natl Acad Sci USA 107(43):18557–18562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilton IB, D'Ippolito AM, Vockley CM et al (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33(5):510–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano H, Gootenberg JS, Horii T et al (2016) Structure and engineering of Francisella novicida Cas9. Cell 164:950–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hockemeyer D, Wang H, Kiani S et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29(8):731–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Wang C, Liu Q et al (2017) Targeted mutagenesis in rice using CRISPR-Cpf1 system. J Genet Genomics 44:71–73

    Article  PubMed  Google Scholar 

  • Hu Y, Dong Q, Yu D (2012) Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Sci 185–186:288–297

    Article  PubMed  CAS  Google Scholar 

  • Hur JK, Kim K, Been KW et al (2016) Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat Biotechnol 34(8):807–808

    Article  CAS  PubMed  Google Scholar 

  • Hwang WY, Fu Y, Reyon D et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K (1987) Nucleotide-sequence of the IAP gene responsible for alkaline–phosphatase isozyme conversion in E. coli and identification of the gene product. J Bact 169:5429–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs JZ, Ciccaglione KM, Tournier V et al (2014) Implementation of the CRISPR-Cas9 system in fission yeast. Nat Commun 5(1):5344

    Article  CAS  PubMed  Google Scholar 

  • Jaganathan D, Ramasamy K, Sellamuthu G et al (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaskiewicz M, Conrath U, Peterhänsel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12:50–55

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Qian F, Yang J et al (2017) CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun 8:15179

    Article  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joung JK, Sander JD (2012) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14(1):49–55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim D, Kim J, Hur JK et al (2016) Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 34(8):863–868

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Kim S-T, Ryu J et al (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:14406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc-finger fusion to Fok I cleavage domain. Proc Natl Acad Sci USA 93:1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinstiver BP, Pattanayak V, Prew MS et al (2016a) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinstiver BP, Tsai SQ, Prew MS et al (2016b) Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34(8):869–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konermann S, Brigham MD, Trevino AE, et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–588.

    Article  CAS  PubMed  Google Scholar 

  • Kungulovski G, Jeltsch A (2016) Epigenome editing: state of the art, concepts, and perspectives. Trends Genet 32(2):101–113

    Article  CAS  PubMed  Google Scholar 

  • Kwon DY, Zhao YT, Lamonica JM et al (2017) Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC. Nat Commun 8:15315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Russa MF, Qi LS (2015) The new state of the art: Cas9 for gene activation and repression. Mol Cell Biol 35:3800–3809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leenay RT, Maksimchuk KR, Slotkowski RA et al (2016) Identifying and visualizing functional PAM diversity across CRISPR-Cas systems. Mol Cell 62:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JF, Norville JE, Aach J et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Wei K, Zheng G et al (2018) CRISPR-Cpf1-Assisted multiplex genome editing and transcriptional repression in Streptomyces. Appl Environ Microbiol 84(18):pii: e00827-18

    Article  Google Scholar 

  • Li Q, Chen J, Minton NP et al (2016) CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol J 11(7):961–972

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Moschou PN (2018) Phenotypic novelty by CRISPR in plants. Dev Biol 435(2):170–175

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Xie C, Si H et al (2017) CRISPR/Cas9-mediated genome editing in plants. Methods 121–122:94–102

    Article  PubMed  CAS  Google Scholar 

  • Lowder LG, Zhang D, Baltes NJ et al (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169(2):971–985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luna E, Bruce TJ, Roberts MR et al (2012) Next-generation systemic acquired resistance. Plant Physiol 158(2):844–853

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Zhu Q, Chen Y et al (2016) CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9(7):961–974

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS, Wolf YI, Alkhnbashi OS et al (2015) An updated evolutionary classification of CRISPR-Cas system. Nat Rev Microbiol 13:722–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mali P, Yang L, Esvelt KM et al (2013) RNA-Guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Aguilar K, Ramírez-Carrasco G, Hernández-Chávez JL et al (2016) Use of BABA and INA as activators of a primed state in the common bean (Phaseolus vulgaris L.). Front Plant Sci 7:653

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreno-Mateos MA, Fernandez JP, Rouet R et al (2017) CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Nat Commun 8:2024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nekrasov V, Staskawicz B, Weigel D et al (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693

    Article  CAS  PubMed  Google Scholar 

  • Nguyen DP, Miyaoka Y, Gilbert LA et al (2016) Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity. Nat Commun 7:12009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nihongaki Y, Yamamoto S, Kawano F et al (2015) CRISPR-Cas9-based photoactivatable transcription system. Chem Biol 22:169–174

    Article  CAS  PubMed  Google Scholar 

  • Nødvig CS, Nielsen JB, Kogle ME et al (2015) A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLOS ONE 10(7):e0133085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Geen H, Ren C, Nicolet CM et al (2017) dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. Nucleic Acids Res 45(17):9901–9916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pellegrini P, Fernández RJ (2018) Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc Natl Acad Sci USA 115(10):2335–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Pinera P, Kocak DD, Vockley CM et al (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10:973–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters JM, Colavin A, Shi H et al (2016) A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165(6):1493–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piatek A, Ali Z, Baazim H et al (2014) RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol J 13(4):578–589

    Article  PubMed  CAS  Google Scholar 

  • Puchta H, Dujon BB (1993) Homologous recombination in plant cells is enhanced by in vivo double strand breaks into DNA by a specific endonuclease. Nucleic Acids Res 21:5034–5040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quétier F (2016) The CRISPR-Cas9 technology: closer to the ultimate toolkit for targeted genome editing. Plant Sci 242:65–76

    Article  PubMed  CAS  Google Scholar 

  • Ramírez-Carrasco G, Martínez-Aguilar K, Alvarez-Venegas R (2017) Transgenerational defense priming for crop protection against plant pathogens: a hypothesis. Front Plant Sci 8:696

    Article  PubMed  PubMed Central  Google Scholar 

  • Ran FA, Hsu PD, Lin C-Y et al (2013) Double nicking by RNA-Guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rienecker KD, Hill MJ, Isles AR (2016) Methods of epigenome editing for probing the function of genomic imprinting. Epigenomics 8(10):1389–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan OW, Cate JHD (2014) Multiplex engineering of industrial yeast genomes using CRISPRm. Methods Enzymol 546:473–489

    Article  CAS  PubMed  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for genome editing, regulation and targeting. Nat Biotechnol 32(4):347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sander JD, Cade L, Khayter C et al (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29(8):697–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapranauskas R, Gasiunas G, Fremaux C et al (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39(21):9275–9282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease forin plantagene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80(6):1139–1150

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J et al (2013) Targeted genomemodification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  • Shen B, Zhang J, Wu H et al (2013) Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res 23(5):720–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi T-Q, Liu G-N, Ji R-Y et al (2017) CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art. Appl Microbiol Biotechnol 101(20):7435–7443

    Article  CAS  PubMed  Google Scholar 

  • Shimatani Z, Kashojiya S, Takayama M et al (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35(5):441–443

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Roy S, Singh D et al (2014) Arabidopsis flowering locus D influences systemic-acquired-resistance- induced expression and histone modifications of WRKY genes. J Biosci 39(1):119–126

    Article  CAS  PubMed  Google Scholar 

  • Slaughter A, Daniel X, Flors V et al (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    Article  CAS  PubMed  Google Scholar 

  • Soda N, Verma L, Giri J (2017) CRISPR-Cas9 based plant genome editing: significance, opportunities and recent advances. Plant Physiol Biochem 131:2–11

    Article  PubMed  CAS  Google Scholar 

  • Świat MA, Dashko S, den Ridder M et al (2017) FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae. Nucleic Acids Res 45(21):12585–12598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tak YE, Kleinstiver BP, Nunez JK et al (2017) Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors. Nat Methods 14:1163–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanenbaum ME, Gilbert LA, Qi LS et al (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159(3):635–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X, Lowder LG, Zhang T et al (2017) A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018

    Article  CAS  PubMed  Google Scholar 

  • Tesson L, Usal C, Ménoret S et al (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29(8):695–696

    Article  CAS  PubMed  Google Scholar 

  • Thakore PI, Black JB, Hilton IB et al (2016) Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 13(2):127–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urnov F (2016) The domestication of Cas9. Nature 529:468–469

    Article  CAS  PubMed  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC et al (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genetics 11(9):636–646

    Article  CAS  PubMed  Google Scholar 

  • Verwaal R, Buiting-Wiessenhaan N, Dalhuijsen S et al (2017) CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae. Yeast 35(2):201–211

    Article  PubMed  CAS  Google Scholar 

  • Vojta A, Dobrinić P, Tadić V et al (2016) Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44(12):5615–5628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Mao Y, Lu Y et al (2017) Multiplex gene editing in rice using the CRISPR–Cpf1 system. Mol Plant 10:1011–1013

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Cao H, Chen F et al (2014) The roles of histone acetylation in seed performance and plant development. Plant Physiol Biochem 84:125–133

    Article  CAS  PubMed  Google Scholar 

  • Wu WY, Lebbink JHG, Kanaar R et al (2018) Genome editing by natural and engineered CRISPR-associated nucleases. Nat Chem Biol 14:642–651

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6:1975–1983

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112(11):3570–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Zhao Z, Dong A et al (2008) Di- and Tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol Cell Biol 28:1348–1360

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Qi LS (2018) A CRISPR–dCas toolbox for genetic engineering and synthetic biology. J Mol Biol. pii: S0022-2836(18)30666-1

    Google Scholar 

  • Yamano T, Nishimasu H, Zetsche B et al (2016) Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165:949–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan MY, Yan HQ, Ren GX et al (2017) CRISPR-Cas12a-assisted recombineering in bacteria. Appl Environ Microbiol 83(17):pii: e00947-17

    Article  Google Scholar 

  • Yan WX, Chong S, Zhang H et al (2018) Cas13d Is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol Cell 70(2):327–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X, Biswal AK, Dionora J et al (2017) CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Rep 36(5):745–757

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Ren M, Wang Z (2013) Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics 195(1):289–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi SS, Mahfouz MM, Mansoor S (2017) CRISPR-Cpf1: a new tool for plant genome editing. Trends Plant Sci 22(7):550–553

    Article  CAS  PubMed  Google Scholar 

  • Zalatan JG, Lee ME, Almeida R et al (2015) Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160(1–2):339–350

    Article  CAS  PubMed  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zetsche B, Heidenreich M, Mohanraju P et al (2016) Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat Biotechnol 35(1):31–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Wang J, Cheng Q et al (2017) Multiplex gene regulation by CRISPR-ddCpf1. Cell Discov 3:17018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Heidrich N, Ampattu BJ et al (2013) Processing-Independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell 50(4):488–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerli L, Jakab G, Metraux JP et al (2000) Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta-amino butyric acid. Proc Natl Acad Sci USA 97:12920–12925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo Z, Liu J (2017) Structure and dynamics of Cas9 HNH domain catalytic state. Sci Rep 7(1):17271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a “Consejo Nacional de Ciencia y Tecnología” grant (CB2015/257129) to RA-V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Alvarez-Venegas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

López-Calleja, A.C., Vizuet-de-Rueda, J.C., Alvarez-Venegas, R. (2019). Targeted Epigenome Editing of Plant Defense Genes via CRISPR Activation (CRISPRa). In: Alvarez-Venegas, R., De-la-Peña, C., Casas-Mollano, J. (eds) Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-14760-0_10

Download citation

Publish with us

Policies and ethics