Skip to main content

The Evolution of Cognitive Load Theory and the Measurement of Its Intrinsic, Extraneous and Germane Loads: A Review

  • Conference paper
  • First Online:
Human Mental Workload: Models and Applications (H-WORKLOAD 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1012))

Abstract

Cognitive Load Theory has been conceived for supporting instructional design through the use of the construct of cognitive load. This is believed to be built upon three types of load: intrinsic, extraneous and germane. Although Cognitive Load Theory and its assumptions are clear and well-known, its three types of load have been going through a continuous investigation and re-definition. Additionally, it is still not clear whether these are independent and can be added to each other towards an overall measure of load. The purpose of this research is to inform the reader about the theoretical evolution of Cognitive Load Theory as well as the measurement techniques and measures emerged for its cognitive load types. It also synthesises the main critiques of scholars and the scientific value of the theory from a rationalist and structuralist perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sweller, J., Van Merrienboer, J.J., Paas, F.G.: Cognitive architecture and instructional design. Educ. Psychol. Rev. 10(3), 251–296 (1998)

    Article  Google Scholar 

  2. Young, M.S., Brookhuis, K.A., Wickens, C.D., Hancock, P.A.: State of science: mental workload in ergonomics. Ergonomics 58(1), 1–17 (2015). https://doi.org/10.1080/00140139.2014.956151

    Article  Google Scholar 

  3. Baddeley, A.: Recent developments in working memory. Curr. Opin. Neurobiol. 8(2), 234–238 (1998). https://doi.org/10.1016/s0959-4388(98)80145-1

    Article  MathSciNet  Google Scholar 

  4. Paivio, A.: Mental Representation: A Dual-Coding Approach. Oxford University Press, New York (1986)

    Google Scholar 

  5. Hart, S.G., Wickens, C.D.: Workload assessment and prediction. In: Booher, H.R. (ed.) MANPRINT: An Approach to Systems Integration, pp. 257–296. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-009-0437-8_9

    Chapter  Google Scholar 

  6. Sweller, J.: Element interactivity and intrinsic, extraneous, and germane cognitive load. Educ. Psychol. Rev. 22(2), 123–138 (2010)

    Article  Google Scholar 

  7. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63(2), 81 (1956)

    Article  Google Scholar 

  8. Clark, R.C., Nguyen, F., Sweller, J., Baddeley, M.: Efficiency in learning: evidence-based guidelines to manage cognitive load. Perform. Improv. 45(9), 46–47 (2006)

    Article  Google Scholar 

  9. Mayer, R.E., Moreno, R.: Nine ways to reduce cognitive load in multimedia learning. Educ. Psychol. 38(1), 43–52 (2003)

    Article  Google Scholar 

  10. Mayer, R.E.: Principles for managing essential processing in multimedia learning: segmenting, pretraining, and modality principles. In: The Cambridge Handbook of Multimedia Learning, pp. 169–182 (2005)

    Google Scholar 

  11. Kirschner, F., Paas, F., Kirschner, P.A.: Superiority of collaborative learning with complex tasks: a research note on an alternative affective explanation. Comput. Hum. Behav. 27(1), 53–57 (2011)

    Article  Google Scholar 

  12. Chi, M.T.H., Glaser, R., Rees, E.: Expertise in problem solving. In: Sternberg, R. (ed.) Advances in the Psychology of Human Intelligence, pp. 7–75. Lawrence Erlbaum, Hillsdale (1982)

    Google Scholar 

  13. Paas, F.G., Van Merriënboer, J.J., Adam, J.J.: Measurement of cognitive load in instructional research. Percept. Mot. Skills 79(1), 419–430 (1994)

    Article  Google Scholar 

  14. Longo, L., Barrett, S.: A computational analysis of cognitive effort. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010, Part II. LNCS (LNAI), vol. 5991, pp. 65–74. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12101-2_8

    Chapter  Google Scholar 

  15. Longo, L., Barrett, S.: Cognitive effort for multi-agent systems. In: Yao, Y., Sun, R., Poggio, T., Liu, J., Zhong, N., Huang, J. (eds.) BI 2010. LNCS (LNAI), vol. 6334, pp. 55–66. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15314-3_6

    Chapter  Google Scholar 

  16. Longo, L., Leva, M.C.: Human Mental Workload: Models and Applications, vol. 726. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0

    Book  Google Scholar 

  17. Halford, G.S., Maybery, M.T., Bain, J.D.: Capacity limitations in children’s reasoning: a dual-task approach. Child Dev. 57(3), 616–627 (1986). https://doi.org/10.2307/1130340

    Article  Google Scholar 

  18. Sweller, J.: Cognitive load theory, learning difficulty, and instructional design. Learn. Instr. 4(4), 295–312 (1994)

    Article  Google Scholar 

  19. Paas, F.G., Van Merriënboer, J.J.: Variability of worked examples and transfer of geometrical problem-solving skills: a cognitive-load approach. J. Educ. Psychol. 86(1), 122 (1994)

    Article  Google Scholar 

  20. Gerjets, P., Scheiter, K.: Goal configurations and processing strategies as moderators between instructional design and cognitive load: evidence from hypertext-based instruction. Educ. Psychol. 38(1), 33–41 (2003)

    Article  Google Scholar 

  21. Miwa, K., Kojima, K., Terai, H., Mizuno, Y.: Measuring cognitive loads based on the mental chronometry paradigm. In: COGNITIVE 2016 : The Eighth International Conference on Advanced Cognitive Technologies and Applications, pp. 38–41 (2016)

    Google Scholar 

  22. Meyer, D.E., Osman, A.M., Irwin, D.E., Yantis, S.: Modern mental chronometry. Biol. Psychol. 26(1–3), 3–67 (1988)

    Article  Google Scholar 

  23. Gerjets, P., Scheiter, K., Opfermann, M., Hesse, F.W., Eysink, T.H.S.: Learning with hypermedia: the influence of representational formats and different levels of learner control on performance and learning behavior. Comput. Hum. Behav. 25(2), 360–370 (2009). https://doi.org/10.1016/j.chb.2008.12.015

    Article  Google Scholar 

  24. Corbalan, G., Kester, L., van Merriënboer, J.J.G.: Selecting learning tasks: effects of adaptation and shared control on learning efficiency and task involvement. Contemp. Educ. Psychol. 33(4), 733–756 (2008). https://doi.org/10.1016/j.cedpsych.2008.02.003

    Article  Google Scholar 

  25. Ayres, P.: Using subjective measures to detect variations of intrinsic cognitive load within problems. Learn. Instr. 16(5), 389–400 (2006)

    Article  Google Scholar 

  26. Gerjets, P., Scheiter, K., Catrambone, R.: Can learning from molar and modular worked examples be enhanced by providing instructional explanations and prompting self-explanations? Learn. Instr. 16(2), 104–121 (2006). https://doi.org/10.1016/j.learninstruc.2006.02.007

    Article  Google Scholar 

  27. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (task load index): results of empirical and theoretical research. In: Advances in Psychology, vol. 52, pp. 139–183. Elsevier (1988). https://doi.org/10.1016/s0166-4115(08)62386-9

    Google Scholar 

  28. Scheiter, K., Gerjets, P., Catrambone, R.: Making the abstract concrete: visualizing mathematical solution procedures. Comput. Hum. Behav. 22(1), 9–25 (2006). https://doi.org/10.1016/j.chb.2005.01.009

    Article  Google Scholar 

  29. Gerjets, P., Scheiter, K., Catrambone, R.: Designing instructional examples to reduce intrinsic cognitive load: molar versus modular presentation of solution procedures. Instr. Sci. 32(1/2), 33–58 (2004). https://doi.org/10.1023/b:truc.0000021809.10236.71

    Article  Google Scholar 

  30. Galy, E., Cariou, M., Mélan, C.: What is the relationship between mental workload factors and cognitive load types? Int. J. Psychophysiol. 83(3), 269–275 (2012). https://doi.org/10.1016/j.ijpsycho.2011.09.023

    Article  Google Scholar 

  31. Thayer, R.E.: Toward a psychological theory of multidimensional activation (arousal). Motiv. Emot. 2(1), 1–34 (1978)

    Article  MathSciNet  Google Scholar 

  32. Leppink, J., Paas, F., Van der Vleuten, C.P.M., Van Gog, T., Van Merriënboer, J.J.G.: Development of an instrument for measuring different types of cognitive load. Behav. Res. Methods 45(4), 1058–1072 (2013). https://doi.org/10.3758/s13428-013-0334-1

    Article  Google Scholar 

  33. Kalyuga, S., Chandler, P., Sweller, J.: Levels of expertise and instructional design. Hum. Factors 40(1), 1 (1998)

    Article  Google Scholar 

  34. Cierniak, G., Scheiter, K., Gerjets, P.: Explaining the split-attention effect: Is the reduction of extraneous cognitive load accompanied by an increase in germane cognitive load? Comput. Hum. Behav. 25(2), 315–324 (2009). https://doi.org/10.1016/j.chb.2008.12.020

    Article  Google Scholar 

  35. Salomon, G.: Television is “easy” and print is “tough”: the differential investment of mental effort in learning as a function of perceptions and attributions. J. Educ. Psychol. 76(4), 647 (1984)

    Article  Google Scholar 

  36. Paas, F.G.: Training strategies for attaining transfer of problem-solving skill in statistics: a cognitive-load approach. J. Educ. Psychol. 84(4), 429 (1992)

    Article  Google Scholar 

  37. Leppink, J., Paas, F., van Gog, T., van der Vleuten, C.P.M., van Merriënboer, J.J.G.: Effects of pairs of problems and examples on task performance and different types of cognitive load. Learn. Instr. 30, 32–42 (2014). https://doi.org/10.1016/j.learninstruc.2013.12.001

    Article  Google Scholar 

  38. Zukić, M., Đapo, N., Husremović, D.: Construct and predictive validity of an instrument for measuring intrinsic, extraneous and germane cognitive load. Univ. J. Psychol. 4(5), 242–248 (2016). https://doi.org/10.13189/ujp.2016.040505

    Article  Google Scholar 

  39. Klepsch, M., Schmitz, F., Seufert, T.: Development and validation of two instruments measuring intrinsic, extraneous, and germane cognitive load. Front. Psychol. 8 (2017). https://doi.org/10.3389/fpsyg.2017.01997

  40. Rodriguez, M.C., Maeda, Y.: Meta-analysis of coefficient alpha. Psychol. Methods 11(3), 306 (2006)

    Article  Google Scholar 

  41. DeLeeuw, K.E., Mayer, R.E.: A comparison of three measures of cognitive load: Evidence for separable measures of intrinsic, extraneous, and germane load. J. Educ. Psychol. 100(1), 223–234 (2008). https://doi.org/10.1037/0022-0663.100.1.223

    Article  Google Scholar 

  42. Kester, L., Kirschner, P.A., van Merriënboer, J.J.G.: The management of cognitive load during complex cognitive skill acquisition by means of computer-simulated problem solving. Br. J. Educ. Psychol. 75(1), 71–85 (2005). https://doi.org/10.1348/000709904x19254

    Article  Google Scholar 

  43. Van Gog, T., Paas, F.: Instructional efficiency: revisiting the original construct in educational research. Educ. Psychol. 43(1), 16–26 (2008)

    Article  Google Scholar 

  44. Schnotz, W., Kürschner, C.: A reconsideration of cognitive load theory. Educ. Psychol. Rev. 19(4), 469–508 (2007)

    Article  Google Scholar 

  45. De Jong, T.: Cognitive load theory, educational research, and instructional design: some food for thought. Instr. Sci. 38(2), 105–134 (2010)

    Article  Google Scholar 

  46. Gerjets, P., Scheiter, K., Cierniak, G.: The scientific value of cognitive load theory: a research agenda based on the structuralist view of theories. Educ. Psychol. Rev. 21(1), 43–54 (2009). https://doi.org/10.1007/s10648-008-9096-1

    Article  Google Scholar 

  47. Sweller, J., Ayres, P.L., Kalyuga, S., Chandler, P.: The expertise reversal effect. The expertise reversal effect. Educ. Psychol. 38(1), 23–31 (2003)

    Article  Google Scholar 

  48. Popper, K.: The Logic of Scientific Discovery. Routledge, Abingdon (2005)

    Book  MATH  Google Scholar 

  49. Popper, K.: Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge, Abingdon (2014)

    Book  Google Scholar 

  50. Sneed, J.D.: The Logical Structure of Mathematical Physics, vol. 3. Springer, Heidelberg (2012). https://doi.org/10.1007/978-94-009-9522-2

    Book  MATH  Google Scholar 

  51. Balzer, W., Moulines, C., Sneed, J.: An architectonic for science–the structuralist program. Reidel, Dordrecht (1987). Springer. Traducción al castellano de P. Lorenzano: Una arquitectónica para la ciencia–El programa estructuralista. Universidad Nacional de Quilmes, Bernal (Argentina) (2012)

    Book  MATH  Google Scholar 

  52. Stegmüller, W.: The Structuralist View of Theories: A Possible Analogue of the Bourbaki Programme in Physical Science. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-95360-6

    Book  MATH  Google Scholar 

  53. Westermann, R.: Structuralist reconstruction of psychological research: cognitive dissonance. Ger. J. Psychol. 12(3), 218–231 (1988)

    Google Scholar 

  54. Plass, J.L., Moreno, R., Brünken, R.: Cognitive Load Theory. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  55. Sweller, J., Cooper, G.A.: The use of worked examples as a substitute for problem solving in learning algebra. Cogn. Instr. 2(1), 59–89 (1985)

    Article  Google Scholar 

  56. Tarmizi, R.A., Sweller, J.: Guidance during mathematical problem solving. J. Educ. Psychol. 80(4), 424 (1988)

    Article  Google Scholar 

  57. Chandler, P., Sweller, J.: Cognitive load theory and the format of instruction. Cogn. Instr. 8(4), 293–332 (1991). https://doi.org/10.1207/s1532690xci0804_2

    Article  Google Scholar 

  58. Mousavi, S.Y., Low, R., Sweller, J.: Reducing cognitive load by mixing auditory and visual presentation modes. J. Educ. Psychol. 87(2), 319 (1995)

    Article  Google Scholar 

  59. Sweller, J., Ayres, P., Kalyuga, S.: Cognitive Load Theory, Explorations in the Learning Sciences, Instructional Systems, and Performance Technologies 1. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-8126-4

    Book  Google Scholar 

  60. Sweller, J., Chandler, P.: Evidence for cognitive load theory. Cogn. Instr. 8(4), 351–362 (1991)

    Article  Google Scholar 

  61. Longo, L.: A defeasible reasoning framework for human mental workload representation and assessment. Behav. Inf. Technol. 34(8), 758–786 (2015)

    Article  Google Scholar 

  62. Longo, L.: Formalising human mental workload as a defeasible computational concept. Ph.D. thesis, Trinity College Dublin (2014)

    Google Scholar 

  63. Longo, L.: Mental workload in medicine: foundations, applications, open problems, challenges and future perspectives. In: 2016 IEEE 29th International Symposium on Computer-Based Medical Systems (CBMS), pp. 106–111 (2016). https://doi.org/10.1109/cbms.2016.36

  64. Wickens, C.D.: Mental workload: assessment, prediction and consequences. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 18–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_2

    Chapter  Google Scholar 

  65. Hancock, P.A.: Whither workload? Mapping a path for its future development. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_1

    Chapter  Google Scholar 

  66. Rizzo, L., Dondio, P., Delany, S.J., Longo, L.: Modeling mental workload via rule-based expert system: a comparison with NASA-TLX and workload profile. In: Iliadis, L., Maglogiannis, I. (eds.) AIAI 2016. IAICT, vol. 475, pp. 215–229. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44944-9_19

    Chapter  Google Scholar 

  67. Moustafa, K., Luz, S., Longo, L.: Assessment of mental workload: a comparison of machine learning methods and subjective assessment techniques. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 30–50. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_3

    Chapter  Google Scholar 

  68. Rizzo, L.M., Longo, L.: Representing and inferring mental workload via defeasible reasoning: a comparison with the NASA Task Load Index and the Workload Profile. In: Proceedings of the 1st Workshop on Advances in Argumentation in Artificial Intelligence co-located with {XVI} International Conference of the Italian Association for Artificial Intelligence (AI*IA 2017), pp. 126–140 (2017)

    Google Scholar 

  69. Longo, L., Dondio, P.: On the relationship between perception of usability and subjective mental workload of web interfaces. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2015, Singapore, 6–9 December, vol. I, pp. 345–352 (2015)

    Google Scholar 

  70. Longo, L.: Formalising human mental workload as non-monotonic concept for adaptive and personalised web-design. In: Masthoff, J., Mobasher, B., Desmarais, M.C., Nkambou, R. (eds.) UMAP 2012. LNCS, vol. 7379, pp. 369–373. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31454-4_38

    Chapter  Google Scholar 

  71. Longo, L.: Subjective usability, mental workload assessments and their impact on objective human performance. In: Bernhaupt, R., Dalvi, G., Joshi, A., Balkrishan, D.K., O’Neill, J., Winckler, M. (eds.) INTERACT 2017. LNCS, vol. 10514, pp. 202–223. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67684-5_13

    Chapter  Google Scholar 

  72. Longo, L.: Experienced mental workload, perception of usability, their interaction and impact on task performance. PLoS ONE 13(8), e0199661 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Longo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Orru, G., Longo, L. (2019). The Evolution of Cognitive Load Theory and the Measurement of Its Intrinsic, Extraneous and Germane Loads: A Review. In: Longo, L., Leva, M. (eds) Human Mental Workload: Models and Applications. H-WORKLOAD 2018. Communications in Computer and Information Science, vol 1012. Springer, Cham. https://doi.org/10.1007/978-3-030-14273-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14273-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14272-8

  • Online ISBN: 978-3-030-14273-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics