Recognizing Hierarchical Watersheds

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11414)


Combining hierarchical watersheds has proven to be a good alternative method to outperform individual hierarchical watersheds. Consequently, this raises the question of whether the resulting combinations are hierarchical watersheds themselves. Since the naive algorithm to answer this question has a factorial time complexity, we propose a new characterization of hierarchical watersheds which leads to a quasi-linear time algorithm to determine if a hierarchy is a hierarchical watershed.


  1. 1.
    Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE PAMI 33(5), 898–916 (2011)CrossRefGoogle Scholar
  2. 2.
    Beucher, S.: Watershed, hierarchical segmentation and waterfall algorithm. In: Serra, J., Soille, P. (eds.) ISMM, pp. 69–76. Kluwer, Dordrecht (1994)Google Scholar
  3. 3.
    Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. Opt. Eng. 34, 433 (1992). Marcel Dekker Incorporated, New YorkGoogle Scholar
  4. 4.
    Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: minimum spanning forests and the drop of water principle. IEEE PAMI 31(8), 1362–1374 (2009)CrossRefGoogle Scholar
  5. 5.
    Cousty, J., Najman, L.: Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 272–283. Springer, Heidelberg (2011). Scholar
  6. 6.
    Cousty, J., Najman, L., Kenmochi, Y., Guimarães, S.: Hierarchical segmentations with graphs: quasi-flat zones, minimum spanning trees, and saliency maps. JMIV 60(4), 479–502 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cousty, J., Najman, L., Perret, B.: Constructive links between some morphological hierarchies on edge-weighted graphs. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 86–97. Springer, Heidelberg (2013). Scholar
  8. 8.
    Lotufo, R., Silva, W.: Minimal set of markers for the watershed transform. In: Proceedings of ISMM 2002, pp. 359–368 (2002)Google Scholar
  9. 9.
    Santana Maia, D., de Albuquerque Araujo, A., Cousty, J., Najman, L., Perret, B., Talbot, H.: Evaluation of combinations of watershed hierarchies. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds.) ISMM 2017. LNCS, vol. 10225, pp. 133–145. Springer, Cham (2017). Scholar
  10. 10.
    Meyer, F.: The dynamics of minima and contours. In: Maragos, P., Schafer, R., Butt, M. (eds.) ISMM, pp. 329–336. Kluwer, Dordrecht (1996)Google Scholar
  11. 11.
    Meyer, F., Vachier, C., Oliveras, A., Salembier, P.: Morphological tools for segmentation: connected filters and watersheds. Ann. Télécommun. 52, 367–379 (1997)Google Scholar
  12. 12.
    Najman, L., Cousty, J., Perret, B.: Playing with Kruskal: algorithms for morphological trees in edge-weighted graphs. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 135–146. Springer, Heidelberg (2013). Scholar
  13. 13.
    Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. IEEE PAMI 18(12), 1163–1173 (1996)CrossRefGoogle Scholar
  14. 14.
    Perret, B., Cousty, J., Guimaraes, S.J.F., Maia, D.S.: Evaluation of hierarchical watersheds. IEEE TIP 27(4), 1676–1688 (2018)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEMNoisy-le-GrandFrance

Personalised recommendations