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Abstract. Combining hierarchical watersheds has proven to be a good
alternative method to outperform individual hierarchical watersheds.
Consequently, this raises the question of whether the resulting combina-
tions are hierarchical watersheds themselves. Since the naive algorithm
to answer this question has a factorial time complexity, we propose a new
characterization of hierarchical watersheds which leads to a quasi-linear
time algorithm to determine if a hierarchy is a hierarchical watershed.

1 Introduction

Hierarchical watersheds [2,5,10,13] are hierarchies of partitions obtained from
an initial watershed segmentation [3,4]. They can be represented thanks to their
saliency maps [1,6,13]. Departing from the watershed segmentation of an image,
hierarchical watersheds are constructed by merging the regions of this initial seg-
mentation according to regional attributes. As shown in [14], the performance of
hierarchical watersheds is competitive compared to other hierarchical segmenta-
tion methods while being fast to compute.

Despite their good global performance, hierarchical watersheds based on a
single regional attribute can fail at merging the adequate regions at all levels of
the hierarchy. This problem is illustrated in Fig. 1, where we present the saliency
maps of two hierarchical watersheds based on area [11] and dynamics [13], and
two segmentation levels extracted from each hierarchy. In this representation of
saliency maps, the darkest contours are the ones that persist at the highest levels
of the hierarchies. From the saliency map of the hierarchical watershed based on
area shown in Fig. 1, we can see that the sky region is oversegmented at high
levels of this hierarchy. On the other hand, the beach is oversegmented at high
levels of the hierarchy based on dynamics. To counter this problem, a method
to combine hierarchical watersheds has been proposed and evaluated in [6,9].
As illustrated in Fig. 1, the combination of hierarchical watersheds can provide
better segmentations than their individual counterparts.

Combining hierarchical watersheds raises the question whether the hierar-
chies resulting from combinations are hierarchical watersheds themselves. If so,
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Fig. 1. Hierarchical watersheds based on area and dynamics and their combination by
average.

then there might be an attribute A such that the combinations of hierarchi-
cal watersheds are precisely the hierarchical watersheds based on A. Therefore,
we could simply compute hierarchical watersheds based on A, which is more
efficient than combining hierarchies. Otherwise, it follows that the range of com-
binations of hierarchical watersheds is larger than the domain of hierarchical
watersheds, which is an invitation for studying this new category of hierarchies.
More generally, combining hierarchical watersheds raises the problem of recog-
nizing hierarchical watersheds: given a hierarchy H, decide if H is a hierarchical
watershed.

The contributions of this article are twofold: (1) a new characterization of
hierarchical watersheds; and (2) a quasi-linear time algorithm for solving the
problem of recognizing hierarchical watersheds. Therefore, we have an efficient
algorithm to determine if a given combination of hierarchical watersheds is a
hierarchical watershed. It is noteworthy that the naive approach to recognize
hierarchical watersheds has a factorial time complexity, which is explained later.

This article is organized as follows. In Sect. 2, we review basic notions on
graphs, hierarchies and saliency maps. In Sect. 3, we formally state the problem
of recognizing hierarchical watersheds, we introduce a characterization of hier-
archical watersheds, and we present our quasi-linear time algorithm to recognize
hierarchical watersheds.

2 Background Notions

In this section, we first introduce hierarchies of partitions. Then, we review the
definition of graphs, connected hierarchies and saliency maps. Subsequently, we
define hierarchical watersheds.

2.1 Hierarchies of Partitions

Let V be a set. A partition of V is a set P of non empty disjoint subsets of V
whose union is V . If P is a partition of V , any element of P is called a region
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of P. Let V be a set and let P1 and P2 be two partitions of V . We say that P1

is a refinement of P2 if every element of P1 is included in an element of P2.
A hierarchy (of partitions on V ) is a sequence H = (P0, . . . ,Pn) of partitions
of V such that Pi−1 is a refinement of Pi, for any i ∈ {1, . . . , n} and such
that Pn = {V }. For any i in {0, . . . , n}, any region of the partition P i is called
a region of H. The set of all regions of H is denoted by R(H).

Hierarchies of partitions can be represented as trees whose nodes correspond
to regions, as shown in Fig. 2(a). Given a hierarchy H and two regions X and Y
of H, we say that X is a parent of Y (or that Y is a child of X) if Y ⊂ X and X
is minimal for this property. In other words, if X is a parent of Y and if there is
a region Z such that Y ⊆ Z ⊂ X, then Y = Z.

In Fig. 2(a), the regions of the hierarchy H are linked to their parents (and
to their children) by straight lines. It can be seen that any region X of H such
that X �= V has exactly one parent. Thus, for any region X such that X �= V ,
we write parent(X) = Y where Y is the unique parent of X. For any region R
of H, if R is not the parent of any region of H, we say that R is a leaf region
of H. Otherwise, we say that R is a non-leaf region of H. The set of all non-leaf
regions of H is denoted by R∗(H).

In the hierarchy of Fig. 2(a), we have parent(M1) = parent(M2) = X5. The
set of non-leaf regions of H is R∗ = {X1,X2,X3,X4,X5,X6,X7}.

Fig. 2. (a) A representation of a hierarchy of partitions H = (P0,P1,P2,P3) on the
set {a, b, c, d, e, f, g, h}. (b) A weighted graph (G, w).

2.2 Graphs, Connected Hierarchies and Saliency Maps

A graph is a pair G = (V,E), where V is a finite set and E is a set of pairs
of distinct elements of V , i.e., E ⊆ {{x, y} ⊆ V |x �= y}. Each element of V is
called a vertex (of G), and each element of E is called an edge (of G). To simplify
the notations, the set of vertices and edges of a graph G will be also denoted
by V (G) and E(G), respectively.

Let G = (V,E) be a graph and let X be a subset of V . A sequence π =
(x0, . . . , xn) of elements of X is a path (in X) from x0 to xn if {xi−1, xi} is an
edge of G for any i in {1, . . . , n}. The subset X of V is said to be connected
if, for any x and y in X, there exists a path from x to y. The subset X is a
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connected component of G if X is connected and if, for any connected subset Y
of V , if X ⊆ Y , then we have X = Y . In the following, we denote by CC(G)
the set of all connected components of G. It is well known that this set CC(G)
of all connected components of G is a partition of the set V .

Let G = (V,E) be a graph. A partition of V is connected for G if each of its
regions is connected and a hierarchy on V is connected (for G) if every one of
its partitions is connected. For example, the hierarchy of Fig. 2(a) is connected
for the graph of Fig. 2(b).

Let G be a graph. If w is a map from the edge set of G to the set R
+ of

positive real numbers, then the pair (G,w) is called an (edge) weighted graph.
If (G,w) is a weighted graph, for any edge u of G, the value w(u) is called the
weight of u (for w).

As established in [6], a connected hierarchy can be equivalently treated
by means of a weighted graph through the notion of a saliency map. Given
a weighted graph (G,w) and a hierarchy H = (P0, . . . ,Pn) connected for G,
the saliency map of H is the map from E(G) to {0, . . . , n}, denoted by Φ(H),
such that, for any edge u = {x, y} in E(G), the value Φ(H)(u) is the smallest
value i in {0, . . . , n} such that x and y belong to a same region of Pi. It follows
that any connected hierarchy has a unique saliency map. Moreover, from any
saliency map, we can recover the departing connected hierarchy. Consequently,
the bijection between connected hierarchies and saliency maps allows us to work
indifferently with any of those notions during our study. For instance, the map
depicted in Fig. 2(b) is the saliency map of the hierarchy of Fig. 2(a).

2.3 Hierarchical Minimum Spanning Forests and Watersheds

The watershed segmentation [3,4] derives from the topographic definition of
watersheds lines and catchment basins. A catchment basin is a region whose col-
lected precipitation drains to the same body of water, as a sea, and the watershed
lines are the separating lines between neighbouring catchment basins. In [4], the
authors formalize watersheds in the framework of weighted graphs and show
the optimality of watersheds in the sense of minimum spanning forests. In this
section, we present hierarchical watersheds following the definition of hierarchical
minimum spanning forests (see efficient algorithm in [5,12]).

Let G be a graph. We say that G is a forest if, for any edge u in E(G),
the number of connected components of (V (G), E(G) \ {u}) is larger than the
number of connected components of G. Given another graph G′, we say that G′

is a subgraph of G, denoted by G′ � G, if V (G′) ⊆ V (G) and E(G′) ⊆ E(G).
Let (G,w) be a weighted graph and let G′ be a subgraph of G. A graph G′′ is a
Minimum Spanning Forest (MSF) of G rooted in G′ if:

1. the graphs G and G′′ have the same set of vertices, i.e., V (G′′) = V (G); and
2. the graph G′ is a subgraph of G′′; and
3. each connected component of G′′ includes exactly one connected component

of G′; and



304 D. S. Maia et al.

4. the sum of the weight of the edges of G′′ is minimal among all graphs for
which the above conditions 1, 2 and 3 hold true.

Intuitively, a drop of water on a topographic surface drains in the direction of
a local minimum. Indeed, there is a bijection between the catchment basins of a
surface and its local minima. As established in [4], in the framework of weighted
graphs, watershed-cuts can be induced by the minimum spanning forest rooted
in the minima of this graph. Let (G,w) be a weighted graph and let k be a value
in R

+. A subgraph G′ of G is a minimum (of w) at level k if:

1. V (G′) is connected for G; and
2. for any edge u in E(G′), the weight of u is equal to k; and
3. for any edge {x, y} in E(G)\E(G′) such that |{x, y}∩V (G′)| ≥ 1, the weight

of {x, y} is strictly greater than k.

In the following, we define hierarchical watersheds which are optimal in the
sense of minimum spanning forests [5].

Definition 1 (hierarchical watershed). Let (G,w) be a weighted graph and
let S = (M1, . . . ,Mn) be a sequence of pairwise distinct minima of w such
that {M1, . . . ,Mn} is the set of all minima of w. Let (G0, . . . , Gn−1) be a
sequence of subgraphs of G such that:

1. for any i ∈ {0, . . . , n − 1}, the graph Gi is a MSF of G rooted in (∪{V (Mj) |
j ∈ {i + 1, . . . , n}},∪{E(Mj) | j ∈ {i + 1, . . . , n}}); and

2. for any i ∈ {1, . . . , n − 1}, we have Gi−1 � Gi.

The sequence T = (CC(G0), . . . , CC(Gn−1)) is called a hierarchical water-
shed of (G,w) for S. Given a hierarchy H, we say that H is a hierarchical
watershed of (G,w) if there exists a sequence S = (M1, . . . ,Mn) of pairwise
distinct minima of w such that {M1, . . . ,Mn} is the set of all minima of w and
such that H is a hierarchical watershed for S.

A weighted graph (G,w) and a hierarchical watershed H of (G,w) are illus-
trated in Fig. 3(a) and (b), respectively. We can see that H is the hierarchical
watershed of (G,w) for the sequence S = (M1,M2,M3,M4).

Important Notations and Notions: In the sequel of this article, the symbol G
denotes a tree, i.e., a forest with a unique connected component. To shorten the
notation, the vertex set of G is denoted by V and its edge set is denoted by E.
The symbol w denotes a map from E into R

+ such that, for any pair of distinct
edges u and v in E, we have w(u) �= w(v). Thus, the pair (G,w) is a weighted
graph. The number of minima of w is denoted by n. Every hierarchy considered
in this article is connected for G. Therefore, for the sake of simplicity, we use
the term hierarchy instead of hierarchy which is connected for G.
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Fig. 3. (a) A weighted graph (G, w) with four minima delimited by the dashed lines.
(b) The hierarchical watershed of (G, w) for the sequence (M1, M2, M3, M4). (c) The
binary partition hierarchy B of (G, w).

3 Recognition of Hierarchical Watersheds

In this study, we tackle the following recognition problem:

(P ) given a weighted graph (G,w) and a hierarchy of partitions H, determine
if H is a hierarchical watershed of (G,w).

Problem (P ) can be related to the problem studied in [8]. In [8], the authors
search for a minimum set of markers which lead to a given watershed segmenta-
tion. In our case, we are interested in ordering a predefined set of markers (the
set of all minima of w) that allows to solve the minimum set of markers problem
for the series of all watershed segmentations (partitions) of a given hierarchy.

A naive approach to solve Problem (P ) is to verify if there is a sequence S =
(M1, . . . ,Mn) of pairwise distinct minima of w such that H is the hierarchical
watershed of (G,w) for S. However, there exist n! sequences of n pairwise minima
of w, which leads to an algorithm of factorial time complexity.

To solve Problem (P ) more efficiently, we propose in Sect. 3.2 a characteriza-
tion of hierarchical watersheds based on the binary partition hierarchy by alti-
tude ordering (Sect. 3.1) which, as stated in [7], is known to be closely related
to hierarchical watersheds. This characterization leads to a quasi-linear time
algorithm to recognize hierarchical watersheds (Sect. 3.3).

3.1 Binary Partition Hierarchies by Altitude Ordering

Given any set X, we denote by |X| the cardinality of X. Let k be any element
in {1, . . . , |E|}. We denote by uk the edge in E such that there are k − 1 edges
in E whose weights are strictly smaller than w(uk). We set B0 = {{x} | x ∈ V }.
The k-partition of V (by the map w) is defined by Bk = {By

k−1 ∪ Bx
k−1} ∪

Bk−1 \ {Bx
k−1,B

y
k−1} where uk = {x, y} and Bx

k−1 and By
k−1 are the regions

of Bk−1 that contain x and y, respectively. The edge uk is called a building edge
of the region {By

k−1 ∪Bx
k−1}. The binary partition hierarchy by altitude ordering

(of (G,w)), denoted by B, is the hierarchy (B0, . . . ,B|E|). Since G is a tree,
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we have Bi �= Bi−1 for any i in {1, . . . , |E|}, so each region of B has a unique
building edge and each edge of G is the building edge of a region of B. Given an
edge u in E, we denote by Ru the region of B whose building edge is u.

In Fig. 3(c), we present the binary partition hierarchy B of the graph (G,w)
(shown in Fig. 3(a)). The building edges are shown above the regions in R∗(B).

Important Notation: In the sequel of this article, the binary partition hierar-
chy by altitude ordering of (G,w) is denoted by B.

Let X and Y be two distinct regions of B \{V }. If the parents of X and of Y
are the same, we say that X is a sibling of Y , that Y is a sibling of X or that X
and Y are siblings. It can be seen that X has exactly one sibling and we denote
this unique sibling of X by sibling(X).

3.2 Characterization of Hierarchical Watersheds

In this section, we first introduce one-side increasing maps, which, as shown later,
are closely related to hierarchical watersheds. Then, we state the main result of
this article (Theorem 3), which characterizes the hierarchical watersheds as the
hierarchies whose saliency maps are one-side increasing maps. Finally, we present
a sketch of the proof of Theorem3.1

To define one-side increasing maps, we first introduce watershed-cut edges for
a map. In a topographic surface, the watershed lines are the set of separating lines
between neighbouring catchment basins. In the framework of weighted graphs,
the catchment basins of the map w are the connected components of the minimum
spanning forest rooted in the minima of w. In other words, the catchment basins
of w are the leaf regions of any hierarchical watershed of (G,w). Thus, given any
edge u = {x, y} in E, we say that u is a watershed-cut edge for w if x and y are
in distinct catchment basins of w.

Important Notation: In the sequel of this article, we denote by WS (w) the
set of watershed-cut edges of w.

Definition 2 (one-side increasing map). We say that a map f from E
into R

+ is a one-side increasing map for B if:

1. range(f) = {0, . . . , n − 1};
2. for any u in E, f(u) > 0 if and only if u ∈ WS (w); and
3. for any u in E, there exists a child R of Ru such that f(u) ≥ ∨{f(v) such

that Rv is included in R}, where ∨{} = 0.

where range(f) = {f(u) | u ∈ E}

The next theorem establishes that hierarchical watersheds can be character-
ized as the hierarchies whose saliency maps are one-side increasing maps.

1 The proofs of the lemmas, properties and theorem presented in this article can be
found in https://perso.esiee.fr/∼santanad/proofs.pdf.

https://perso.esiee.fr/~santanad/proofs.pdf
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Fig. 4. (a) and (d) The hierarchies H and H′, respectively. (b) and (e) the weighted
graphs (G, Φ(H)) and (G, Φ(H′)), respectively. (c) and (f) The maps Φ(H) and Φ(H′)
represented on the hierarchy B of Fig. 3(c). For any edge u, the values Φ(H)(u)
and Φ(H′)(u) are shown above the region Ru of B.

Theorem 3 (characterization of hierarchical watersheds). Let H be a
hierarchy and let Φ(H) be the saliency map of H. The hierarchy H is a hier-
archical watershed of (G,w) if and only if Φ(H) is a one-side increasing map
for B.

Let us consider the hierarchy H, the saliency map Φ(H) of H and the
binary partition hierarchy by altitude ordering B (of (G,w) of Fig. 3(a)) shown
in Fig. 4(a), (b) and (c), respectively. It can be verified that Φ(H) is one-side
increasing for B. Thus, by Theorem 3, we may affirm that Φ(H) is the saliency
map of a hierarchical watershed of (G,w) and that H is a hierarchical watershed
of (G,w). On the other hand, the saliency map Φ(H′) shown in Fig. 4(e), is not
one-side increasing for B. Indeed, the weight Φ(H′)({c, e}) of the building edge
of the region Y7 is 1, which is smaller than both ∨{Φ(H′)(v) | Rv ⊆ Y5} = 2
and ∨{Φ(H′)(v) | Rv ⊆ Y6} = 3. Hence, the condition 3 of Definition 2 is not
satisfied by Φ(H′). Thus, by Theorem 3, we may deduce that Φ(H′) is not the
saliency map of a hierarchical watershed of (G,w) and that H′ is not a hierar-
chical watershed of (G,w).

In the remaining of this section, we present a sketch of the proof of Theorem 3.
To prove the forward implication of Theorem 3, we first present the definition
of extinction values and extinction maps.

Let S = (M1, . . . ,Mn) be a sequence of n pairwise distinct minima of w.
Let R be a region of B. As defined in [7], the extinction value of R for S is zero
if there is no minimum of w included in R and, otherwise, it is the maximum
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value i in {1, . . . , n} such that the minimum Mi is included in R. Given a map P
from the regions of B to R

+, we say that P is an extinction map of w if there
exists a sequence S of n pairwise distinct minima of w such that, for any region R
of B, the value P (R) is the extinction value of R for S.

We provide an example of an extinction map in Fig. 5(a). We can see that
the map P is the extinction map of w for the sequence S = (M2,M1,M4,M3).

The next property clarifies the relation between hierarchical watersheds and
extinction maps. It can be deduced from the results of [7], which makes a cor-
respondence between extinction values for a given sequence of minima of w and
the hierarchical watershed for this sequence of minima.

Property 4. Let f be a map from E into R
+. The map f is the saliency map of

a hierarchical watershed of (G,w) if and only if there exists an extinction map P
of w such that, for any u in E, we have

f(u) = min{P (R) such thatR is a child of Ru}.

The forward implication of Theorem 3 can be obtained from Property 4.
Given a hierarchy H, if H is a hierarchical watershed, then there exists an extinc-
tion map P of w such that, for any u in E, we have Φ(H)(u) = min{P (R) such
that R is a child of Ru}, which can be proven to be a one-side increasing map.
In order to establish the backward implication of Theorem 3, we introduce the
notion of estimated extinction maps. Given the saliency map Φ(H) of a hierar-
chy H, an estimated extinction map of Φ(H) is a map P such that, for any u
in E, we have Φ(H)(u) = min{P (R) such that R is a child of Ru}. Indeed, if P
is an extinction map, then Φ(H) is a one-side increasing map.

Important Notation: In the sequel, we consider a total ordering ≺ on the
regions of B such that, given any two edges u and v in E, if w(u) < w(v)
then Ru ≺ Rv. Since the leaf regions of B do not have building edges, there are
several orderings on the regions of B with this property. However, the lemmas
stated here hold for any arbitrary choice of ≺.

Definition 5 (estimated extinction map). Let f be a one-side increasing
map. The estimated extinction map of f is the map ξf from R(B) into R

+ such
that:

1. ξf (R) = n if R = V ;
2. ξf (R) = 0 if there is no minimum M of w such that M ⊆ R;
3. ξf (R) = f(u), where Ru is the parent of R, if there is a minimum M of w

such that M ⊆ R and sibling(R) ∈ R∗(B) and
– if ∨f (R) < ∨f (sibling(R))
– or if ∨f (R) = ∨f (sibling(R)) and R ≺ sibling(R); and

4. ξf (R) = ξf (S), where S is the parent of R otherwise.

where ∨f (R) = ∨{f(v) | v ∈ E,Rv ⊆ R}

The next lemma establishes that the estimated extinction map of any one-
side increasing map is indeed an extinction map.
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Fig. 5. (a) An estimated extinction map P of w (Fig. 3(a)). (b) The saliency map of
Fig. 4(b) represented on the binary partition hierarchy by altitude ordering B of the
graph (G, w) (Fig. 3(a)).

Lemma 6. Let f be a one-side increasing map for B. The estimated extinction
map ξf of f is an extinction map of w.

For instance, let ≺ be a total ordering on the regions of the hierarchy B of
Fig. 3(c) such that {a} ≺ {b} ≺ {c} ≺ {d} ≺ {e} ≺ {f} ≺ {g} ≺ {h} ≺ M2 ≺
M1 ≺ M4 ≺ M3 ≺ Y5 ≺ Y6 ≺ Y7. Then, the extinction map P of Fig. 5(a) is
precisely the estimated extinction map ξΦ(H) of the map Φ(H) of Fig. 5(b).

The next lemma is the key result for establishing the backward implication
of Theorem 3.

Lemma 7. Let f be a one-side increasing map. Then, for any u in E, we have

f(u) = min{ξf (R) such thatR is a child of Ru}.

The backward implication of Theorem 3 is a consequence of Lemmas 6
and 7 and the backward implication of Property 4. Let H be a hierarchy.
If Φ(H) is a one-side increasing map, then the estimated extinction map ξΦ(H)

of Φ(H) is an extinction map of w by Lemma 6. Thus, for any u in E, we
have Φ(H)(u) = min{ξΦ(H)(R) such that R is a child of Ru} by Lemma 7.
Then, by the backward implication of Property 4, we conclude that Φ(H) is the
saliency map of a hierarchical watershed of (G,w) and that H is a hierarchical
watershed of (G,w).

To illustrate Lemma 7, in Fig. 5, we can verify that Φ(H)(u) = min{P (R)
such that R is a child of Ru} for any edge u in E(G) where P (shown in Fig. 5(a))
is precisely the estimated extinction map of Φ(H).

3.3 Recognition Algorithm for Hierarchical Watersheds

In this section, we present a quasi-linear time algorithm to recognize hierarchi-
cal watersheds based on Theorem 3. Given any hierarchy H, to test if H is a
hierarchical watershed of (G,w), it is sufficient to verify that the saliency map
of H is a one-side increasing map for B.

Algorithm 1 provides a description of our algorithm to recognize hierarchical
watersheds. The inputs are a weighted graph ((V,E), w) whose edge weights are
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already sorted and the saliency map f of a hierarchy H. In this implementation,
the edges in E are represented by unique indexes ranging from 1 to |E|.

Algorithm 1. Recognition of hierarchical watersheds
Data: ((V, E), w): a weighted graph whose edges are sorted in increasing order of

weights for w
f : the saliency map of a hierarchy H

Result: true if H is a hierarchical watershed of (G, w) and false otherwise

// In this algorithm, we consider that the default value of

any array position is zero

1: Compute the binary partition hierarchy B of ((V, E), w)
// Computation of the array WS of watershed edges of w and

of their number k = |WS(w)|
2: Declare WS as an array of |E| integers
3: k := 0
4: for each edge u in E do
5: if none of the children of Ru is a leaf node of B then
6: WS[u] := 1
7: k := k + 1

// Computation of the array Max such that, for any region R
of B whose building edge is u, we have Max[u] = ∨f (R),
where ∨f is given in Definition 5

8: Declare Max as an array of |E| real numbers
9: for each edge u in increasing order of weights for w do
10: Max[u] := f [u]
11: for each child X of Ru do
12: if X is not a leaf node of B then
13: v := the building edge of X
14: Max[u] := max(Max[u], Max[v])

// Testing of the conditions 1, 2 and 3 of Definition 2 for f
to be a one-side increasing map for B

15: Declare range as an array of |E| integers
16: for each edge u in E do
17: if f [u] �∈ {0, 1, . . . , k} then return false

18: if f [u] �= 0 and range[f [u]] �= 0 then return false

19: range[f [u]] := 1
20: if (WS[u] = 0 and f [u] �= 0) or (WS[u] = 1 and f [u] = 0) then return false

21: if both children of Ru are in R∗(B) then
22: v1 := the building edge of a child of u
23: v2 := the building edge of sibling(Rv1)
24: if f [u] ≤ Max[v1] and f [u] ≤ Max[v2] then return false

return true

The first step of Algorithm 1 is to compute the binary partition hierarchy
by altitude ordering B of ((V,E), w). As established in [12], any binary partition
hierarchy can be computed in quasi-linear time with respect to |E| provided that
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Fig. 6. Toy example of Algorithm 1.

the edges in E are already sorted or can be sorted in linear time. Subsequently,
the computation of the watershed edges of w and the number of watershed
edges at lines 2−7 is based on the quasi-linear time algorithm proposed in [12].
At lines 8−14, for each edge u in E, we compute Max[u], which is the maximal
value f(v) such that Rv ⊆ Ru. Since each region of B has at most two children,
the time complexity to compute the array Max is also linear with respect to |E|.
The last for loop (lines 15−24) verifies that the three conditions of Definition 2
for f to be a one-side increasing map hold true. Each instruction between lines 17
and 24 can be performed in constant time. Therefore, the overall time complexity
of Algorithm 1 is quasi-linear with respect to |E|.

We illustrate Algorithm 1 in Fig. 6. The inputs are a weighted graph (G,w)
and a saliency map f . First, we obtain the binary partition hierarchy by altitude
ordering B of (G,w) and the four watershed-cut edges of w (underlined). Then,
we compute the array Max. For each edge u of G, the value Max[u] is the
greatest value in the set {f(v) | Rv ⊆ Ru}. We can verify that the range of f
is {0, 1, 2, 3, 4} and that only the watershed-cut edges of w have non-zero weights
for f . Therefore, the conditions 1 and 2 of Definition 2 for f to be a one-side
increasing map for B hold true. Finally, we test the condition 3 of Definition 2.
For each watershed-cut edge u of G, we test if f(u) > Max[v] for an edge v such
that Rv is a child of Ru. For the building edges of the regions Y6, Y7 and Y8 the
condition 3 hold true, but this is not the case for Y9. Thus, f is not a one-side
increasing map for B and Algorithm 1 returns false.
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4 Conclusion

We introduced a new characterization of hierarchical watersheds based on binary
partition hierarchies by altitude ordering. Based on this characterization, we
designed a quasi-linear time algorithm to determine if a hierarchy is a hierarchical
watershed.

In future work, we will extend the recognition of hierarchical watersheds to
arbitrary graphs, i.e., graphs which are not trees and whose edge weights are not
pairwise distinct. We are also interested in the frequency study of hierarchical
watersheds, namely investigating which hierarchies are more likely to be the
hierarchical watersheds of a weighted graph (G,w) for arbitrary sequences of
minima of w.
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