Skip to main content

The Role of Inflammation in the Development of GDM and the Use of Markers of Inflammation in GDM Screening

  • Chapter
  • First Online:
Reviews on Biomarker Studies of Metabolic and Metabolism-Related Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1134))

Abstract

Gestational diabetes mellitus is a hyperglycaemic state first recognised in pregnancy. GDM affects both mother and child. Women with GDM and their new-borns are at risk of developing type 2 diabetes in the future. The screening and diagnostic criteria for GDM are inconsistent and thus novel biomarkers of GDM are required to strengthen the screening and diagnostic processes in GDM. Chronic low-grade inflammation is linked to the majority of the well-established risk factors of GDM such as old age, obesity and PCOS. This review provides an overview of the present knowledge on the pathology of GDM, the screening criteria applied, the role of inflammation in the development of GDM and the use of markers of inflammation namely cytokines, oxidative stress markers, lipids, amino acids and iron markers in screening and diagnosis of GDM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Metzger BE (2016) Diabetes mellitus and pregnancy. In: Endocrinology: adult and pediatric, 7th edn. USA Elsevier/Saunders, Philadelphia, pp 788–804. https://www.clinicalkey.com/#!/content/book/3-s2.0-B9780323189071000457?scrollTo=%23hl0000856

    Chapter  Google Scholar 

  2. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    Article  PubMed  Google Scholar 

  3. Li KT, Naik S, Alexander M, Mathad JS (2018) Screening and diagnosis of gestational diabetes in India: a systematic review and meta-analysis. Acta Diabetol 55:613–625

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dainelli L, Prieto-Patron A, Silva-Zolezzi I, Sosa-Rubi SG, Espino y Sosa S, Reyes-Muñoz E et al (2018) Screening and management of gestational diabetes in Mexico: results from a survey of multilocation, multi-health care institution practitioners. Diabetes Metab Syndr Obes 11:105–116

    Article  PubMed  PubMed Central  Google Scholar 

  5. Macaulay S, Dunger DB, Norris SA (2014) Gestational diabetes mellitus in Africa: a systematic review. PLoS One 9:e97871. https://doi.org/10.1371/journal.pone.0097871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. IDF Diabetes Atlas. Accessed 5 Dec 2018. https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/19-atlas-6th-edition.html

  7. Mohammadbeigi A, Farhadifar F, Soufizadeh N, Mohammadsalehi N, Rezaiee M, Aghaei M (2013) Fetal macrosomia: risk factors, maternal, and perinatal outcome. Ann Med Health Sci Res 3:546–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nehring I, Chmitorz A, Reulen H, von Kries R, Ensenauer R (2013) Gestational diabetes predicts the risk of childhood overweight and abdominal circumference independent of maternal obesity. Diabet Med 30:1449–1456

    Article  CAS  PubMed  Google Scholar 

  9. Kelstrup L, Damm P, Mathiesen ER, Hansen T, Vaag AA, Pedersen O et al (2013) Insulin resistance and impaired pancreatic β-cell function in adult offspring of women with diabetes in pregnancy. J Clin Endocrinol Metab 98:3793–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. West NA, Kechris K, Dabelea D (2013) Exposure to maternal diabetes in utero and DNA methylation patterns in the offspring. Immunometabolism 1:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hartling L, Dryden DM, Guthrie A, Muise M, Vandermeer B, Donovan L (2013) Benefits and harms of treating gestational diabetes mellitus: a systematic review and meta-analysis for the U.S. Preventive Services Task Force and the National Institutes of Health Office of Medical Applications of Research. Ann Intern Med 159:123–129

    Article  PubMed  Google Scholar 

  12. Durnwald C (2015) Gestational diabetes: Linking epidemiology, excessive gestational weight gain, adverse pregnancy outcomes, and future metabolic syndrome. Semin Perinatol 39:254–258

    Article  PubMed  Google Scholar 

  13. Jenum AK, Mørkrid K, Sletner L, Vangen S, Vange S, Torper JL et al (2012) Impact of ethnicity on gestational diabetes identified with the WHO and the modified International Association of Diabetes and Pregnancy Study Groups criteria: a population-based cohort study. Eur J Endocrinol 166:317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anghebem-Oliveira MI, Martins BR, Alberton D, Ramos EA de S, Picheth G, Rego FG de M (2017) Type 2 diabetes-associated genetic variants of FTO, LEPR, PPARg, and TCF7L2 in gestational diabetes in a Brazilian population. Arch Endocrinol Metab 61:238–248

    Article  PubMed  Google Scholar 

  15. Hedderson MM, Williams MA, Holt VL, Weiss NS, Ferrara A (2008) Body mass index and weight gain prior to pregnancy and risk of gestational diabetes mellitus. Am J Obstet Gynecol 198:409.e1–409.e7

    Article  Google Scholar 

  16. Hedderson M, Ehrlich S, Sridhar S, Darbinian J, Moore S, Ferrara A (2012) Racial/ethnic disparities in the prevalence of gestational diabetes mellitus by BMI. Diabetes Care 35:1492–1498

    Article  PubMed  PubMed Central  Google Scholar 

  17. Makki K, Froguel P, Wolowczuk I (2013) Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm 2013:139239. https://doi.org/10.1155/2013/139239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Challis JR, Lockwood CJ, Myatt L, Norman JE, Strauss JF, Petraglia F (2009) Inflammation and Pregnancy. Reprod Sci 16:206–215

    Article  CAS  PubMed  Google Scholar 

  19. Briana DD, Malamitsi-Puchner A (2009) Reviews: adipocytokines in normal and complicated pregnancies. Reprod Sci 16:921–937. https://doi.org/10.1177/1933719109336614

    Article  CAS  PubMed  Google Scholar 

  20. Ashcroft FM, Rohm M, Clark A, Brereton MF (2017) Is Type 2 diabetes a glycogen storage disease of pancreatic β cells? Cell Metab 26:17–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bergmann K, Sypniewska G (2013) Diabetes as a complication of adipose tissue dysfunction. Is there a role for potential new biomarkers? Clin Chem Lab Med 51:177–185

    Article  CAS  PubMed  Google Scholar 

  22. Augustin R (2010) The protein family of glucose transport facilitators: it’s not only about glucose after all. IUBMB Life 62:315–333

    CAS  PubMed  Google Scholar 

  23. Lesseur C, Chen J (2018) Adverse maternal metabolic intrauterine environment and placental epigenetics: implications for fetal metabolic programming. Curr Environ Health Rep. https://doi.org/10.1007/s40572-018-0217-9. [Epub ahead of print]

  24. Li J, Song L, Zhou L, Wu J, Sheng C, Chen H et al (2015) A MicroRNA signature in gestational diabetes mellitus associated with risk of macrosomia. Cell Physiol Biochem 37:243–252

    Article  PubMed  CAS  Google Scholar 

  25. O’sullivan JB, Mahan CM (1954) CRITERIA FOR THE ORAL GLUCOSE TOLERANCE TEST IN PREGNANCY. Diabetes 13:278–285

    Google Scholar 

  26. Diabetes in pregnancy: management from preconception to the postnatal period | Guidance and guidelines | NICE. Accessed 5 Dec 2018. https://www.nice.org.uk/guidance/ng3

  27. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N (2014) Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 105:141–150

    Article  CAS  PubMed  Google Scholar 

  28. Lawrence T (2009) The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651. https://doi.org/10.1101/cshperspect.a001651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Charo L, Lacoursiere DY (2014) Introduction: obesity and lifestyle issues in women. Clin Obstet Gynecol 57:433–445

    Article  PubMed  Google Scholar 

  30. López-Tinoco C, Roca M, Fernández-Deudero A, García-Valero A, Bugatto F, Aguilar-Diosdado M et al (2012) Cytokine profile, metabolic syndrome and cardiovascular disease risk in women with late-onset gestational diabetes mellitus. Cytokine 58:14–19

    Article  PubMed  CAS  Google Scholar 

  31. Richardson AC, Carpenter MW (2007) Inflammatory mediators in gestational diabetes mellitus. Obstet Gynecol Clin N Am 34:213–224. viii

    Article  Google Scholar 

  32. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bellos I, Fitrou G, Pergialiotis V, Perrea DN, Daskalakis G (2018) Serum levels of adipokines in gestational diabetes: a systematic review. J Endocrinol Invest 3. https://doi.org/10.1007/s40618-018-0973-2. [Epub ahead of print]

  34. Fasshauer M, Blüher M, Stumvoll M (2014) Adipokines in gestational diabetes. Lancet Diabetes Endocrinol 2:488–499

    Article  CAS  PubMed  Google Scholar 

  35. Tomas E, Tsao T-S, Saha AK, Murrey HE, Cheng ZC, Itani SI et al (2002) Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: Acetyl–CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci U S A 99:16309–16313

    Google Scholar 

  36. Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, Goldstein BJ (2003) Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52:1355–1363

    Article  CAS  PubMed  Google Scholar 

  37. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295

    Article  CAS  PubMed  Google Scholar 

  38. Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H et al (2002) Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 8:731–737

    Article  CAS  PubMed  Google Scholar 

  39. Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K et al (2001) PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50:2094–2099

    Article  CAS  PubMed  Google Scholar 

  40. Ruderman NB, Shulman GI (2016) Metabolic syndrome. In: Endocrinology: adult and pediatric, 7th edn. Elsevier/Saunders, Philadelphia, pp 752–769.e7. https://www.clinicalkey.com/#!/content/book/3-s2.0-B9780323189071000433?scrollTo=%23hl0000833

    Chapter  Google Scholar 

  41. Bao W, Baecker A, Song Y, Kiely M, Liu S, Zhang C (2015) Adipokine levels during the first or early second trimester of pregnancy and subsequent risk of gestational diabetes mellitus: a systematic review. Metabolism 64:756–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Horosz E, Bomba-Opon DA, Szymanska M, Wielgos M (2011) Third trimester plasma adiponectin and leptin in gestational diabetes and normal pregnancies. Diabetes Res Clin Pract 93:350–356

    Article  CAS  PubMed  Google Scholar 

  43. Park S, Kim M-Y, Baik SH, Woo J-T, Kwon YJ, Daily JW et al (2013) Gestational diabetes is associated with high energy and saturated fat intakes and with low plasma visfatin and adiponectin levels independent of prepregnancy BMI. Eur J Clin Nutr 67:196–201

    Article  CAS  PubMed  Google Scholar 

  44. Retnakaran R, Hanley AJG, Raif N, Connelly PW, Sermer M, Zinman B (2004) Reduced Adiponectin concentration in women with gestational diabetes: a potential factor in progression to type 2 diabetes. Diabetes Care 27:799–800

    Article  CAS  PubMed  Google Scholar 

  45. Retnakaran R, Hanley AJG, Raif N, Hirning CR, Connelly PW, Sermer M et al (2005) Adiponectin and beta cell dysfunction in gestational diabetes: pathophysiological implications. Diabetologia 48:993–1001

    Article  CAS  PubMed  Google Scholar 

  46. Lain KY, Daftary AR, Ness RB, Roberts JM (2008) First trimester adipocytokine concentrations and risk of developing gestational diabetes later in pregnancy. Clin Endocrinol 69:407–411

    Article  Google Scholar 

  47. Williams MA, Qiu C, Muy-Rivera M, Vadachkoria S, Song T, Luthy DA (2004) Plasma adiponectin concentrations in early pregnancy and subsequent risk of gestational diabetes mellitus. J Clin Endocrinol Metab 89:2306–2311

    Article  CAS  PubMed  Google Scholar 

  48. Lacroix M, Battista M-C, Doyon M, Ménard J, Ardilouze J-L, Perron P et al (2013) Lower Adiponectin levels at first trimester of pregnancy are associated with increased insulin resistance and higher risk of developing gestational diabetes mellitus. Diabetes Care 36:1577–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kinalski M, Telejko B, Kuźmicki M, Krętowski A, Kinalska I (2005) Tumor necrosis factor alpha system and plasma Adiponectin concentration in women with gestational diabetes. Horm Metab Res 37:450–454

    Article  CAS  PubMed  Google Scholar 

  50. Skvarca A, Tomazic M, Krhin B, Blagus R, Janez A (2012) Adipocytokines and insulin resistance across various degrees of glucose tolerance in pregnancy. J Int Med Res 40:583–589

    Article  CAS  PubMed  Google Scholar 

  51. Lappas M, Yee K, Permezel M, Rice GE (2018) Release and regulation of leptin, resistin and adiponectin from human placenta, fetal membranes, and maternal adipose tissue and skeletal muscle from normal and gestational diabetes mellitus-complicated pregnancies. J Endocrinol 186:457–465

    Article  CAS  Google Scholar 

  52. Saucedo R, Zarate A, Basurto L, Hernandez M, Puello E, Galvan R et al (2011) Relationship between circulating adipokines and insulin resistance during pregnancy and postpartum in women with gestational diabetes. Arch Med Res 42:318–323

    Article  CAS  PubMed  Google Scholar 

  53. Kishida K, Funahashi T, Shimomura I (2012) Molecular mechanisms of diabetes and atherosclerosis: role of adiponectin. Endocr Metab Immune Disord Drug Targets 12(2):118–131

    Google Scholar 

  54. Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel-Soto J, Morales-González Á, Esquivel-Chirino C et al (2011) Inflammation, oxidative stress, and obesity. Int J Mol Sci 12:3117–3132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214:149–160

    Article  CAS  PubMed  Google Scholar 

  56. Bouwmeester T, Bauch A, Ruffner H, Angrand P-O, Bergamini G, Croughton K et al (2004) A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 6:97–105

    Article  CAS  PubMed  Google Scholar 

  57. Stephens JM, Lee J, Pilch PF (1997) Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Chem 272:971–976

    Article  CAS  PubMed  Google Scholar 

  58. Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM (1994) Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci U S A 91:4854–4858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Altinova AE, Toruner F, Bozkurt N, Bukan N, Karakoc A, Yetkin I et al (2007) Circulating concentrations of adiponectin and tumor necrosis factor-α in gestational diabetes mellitus. Gynecol Endocrinol 23:161–165

    Article  CAS  PubMed  Google Scholar 

  60. Salmi A, Zaki MN, Zakaria, Nor Aliza G, Rasool H (2012) Arterial stiffness, inflammatory and pro-atherogenic markers in gestational diabetes mellitus. Vasa 41:96–104

    Article  PubMed  Google Scholar 

  61. Kirwan JP, Mouzon SH-D, Lepercq J, Challier J-C, Huston-Presley L, Friedman JE et al (2002) TNF-α Is a Predictor of Insulin Resistance in Human Pregnancy. Diabetes 51:2207–2213

    Article  CAS  PubMed  Google Scholar 

  62. Gao X, Yang H, Zhao Y (2008) Variations of tumor necrosis factor-alpha, leptin and adiponectin in mid-trimester of gestational diabetes mellitus. Chin Med J 121:701–705

    Article  CAS  PubMed  Google Scholar 

  63. Guillemette L, Lacroix M, Battista M-C, Doyon M, Moreau J, Ménard J et al (2014) TNFα dynamics during the oral glucose tolerance test vary according to the level of insulin resistance in pregnant women. J Clin Endocrinol Metab 99:1862–1869

    Article  CAS  PubMed  Google Scholar 

  64. Winkler G, Cseh K, Baranyi É, Melczer Z, Speer G, Hajós P et al (2002) Tumor necrosis factor system in insulin resistance in gestational diabetes. Diabetes Res Clin Pract 56:93–99

    Article  CAS  PubMed  Google Scholar 

  65. Gueuvoghlanian-Silva BY, Torloni MR, Mattar R, de Oliveira LS, Scomparini FB, Nakamura MU et al (2012) Profile of inflammatory mediators in gestational diabetes mellitus: phenotype and genotype. Am J Reprod Immunol 67:241–250

    Article  CAS  PubMed  Google Scholar 

  66. Georgiou HM, Lappas M, Georgiou GM, Marita A, Bryant VJ, Hiscock R et al (2008) Screening for biomarkers predictive of gestational diabetes mellitus. Acta Diabetol 45:157–165

    Article  CAS  PubMed  Google Scholar 

  67. Xu J, Zhao YH, Chen YP, Yuan XL, Wang J, Zhu H et al (2014) Maternal circulating concentrations of tumor necrosis factor-alpha, leptin, and adiponectin in gestational diabetes mellitus: a systematic review and meta-analysis. Sci World J 2014:926932. https://doi.org/10.1155/2014/926932

    Article  Google Scholar 

  68. McLachlan KA, O’Neal D, Jenkins A, Alford FP (2006) Do adiponectin, TNFα, leptin and CRP relate to insulin resistance in pregnancy? Studies in women with and without gestational diabetes, during and after pregnancy. Diabetes Metab Res Rev 22:131–138

    Article  CAS  PubMed  Google Scholar 

  69. Maury E, Brichard SM (2010) Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol 314:1–16

    Article  CAS  PubMed  Google Scholar 

  70. Siddiqui S, Waghdhare S, Panda M, Dubey S, Jha S (2018) Association of IL-6 and CRP levels with gestational diabetes mellitus. Diabetes 67:2417–2PUB. https://doi.org/10.2337/db18-2417-PUB. http://diabetes.diabetesjournals.org/content/67/Supplement_1/2417-PUB

    Article  Google Scholar 

  71. Kuzmicki M, Telejko B, Szamatowicz J, Zonenberg A, Nikolajuk A, Kretowski A et al (2009) High resistin and interleukin-6 levels are associated with gestational diabetes mellitus. Gynecol Endocrinol 25:258–263

    Article  CAS  PubMed  Google Scholar 

  72. Vozarova B, Weyer C, Hanson K, Tataranni PA, Bogardus C, Pratley RE (2001) Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes Res 9:414–417

    Article  CAS  PubMed  Google Scholar 

  73. Morisset A-S, Dubé M-C, Côté JA, Robitaille J, Weisnagel SJ, Tchernof A (2011) Circulating interleukin-6 concentrations during and after gestational diabetes mellitus. Acta Obstet Gynecol Scand 90:524–530

    Article  CAS  PubMed  Google Scholar 

  74. Abell SK, Shorakae S, Boyle JA, De Courten B, Stepto NK, Teede HJ et al (2018) Role of serum biomarkers to optimise a validated clinical risk prediction tool for gestational diabetes. Aust N Z J Obstet Gynaecol. https://doi.org/10.1111/ajo.12833. [Epub ahead of print]

  75. Abell SK, De Courten B, Boyle JA, Teede HJ (2015) Inflammatory and other biomarkers: role in pathophysiology and prediction of gestational diabetes mellitus. Int J Mol Sci 16:13442–13473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kralisch S, Fasshauer M (2013) Adipocyte fatty acid binding protein: a novel adipokine involved in the pathogenesis of metabolic and vascular disease? Diabetologia 56:10–21

    Article  CAS  PubMed  Google Scholar 

  77. Xu A, Wang Y, Xu JY, Stejskal D, Tam S, Zhang J et al (2006) Adipocyte fatty acid–binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin Chem 52:405–413

    Article  CAS  PubMed  Google Scholar 

  78. Stejskal D, Karpisek M (2006) Adipocyte fatty acid binding protein in a Caucasian population: a new marker of metabolic syndrome? Eur J Clin Investig 36:621–625

    Article  CAS  Google Scholar 

  79. Ortega-Senovilla H, Schaefer-Graf U, Meitzner K, Abou-Dakn M, Graf K, Kintscher U et al (2011) Gestational diabetes mellitus causes changes in the concentrations of Adipocyte fatty acid–binding protein and other Adipocytokines in cord blood. Diabetes Care 34:2061–2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tu W-J, Guo M, Shi X-D, Cai Y, Liu Q, Fu C-W (2017) First-trimester serum fatty acid-binding protein 4 and subsequent gestational diabetes mellitus. Obstet Gynecol 130:1011–1016. https://doi.org/10.1097/AOG.0000000000002310

    Article  CAS  PubMed  Google Scholar 

  81. Iikuni N, Lam QLK, Lu L, Matarese G, La Cava A (2008) Leptin and inflammation. Curr Immunol Rev 4:70–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Triantafyllou GA, Paschou SA, Mantzoros CS (2016) Leptin and hormones. Endocrinol Metab Clin N Am 45:633–645

    Article  Google Scholar 

  83. Moon H-S, Huh JY, Dincer F, Schneider BE, Hasselgren P-O, Mantzoros CS (2015) Identification and saturable nature of signaling pathways induced by metreleptin in humans: comparative evaluation of In Vivo, Ex Vivo, and In Vitro Administration. Diabetes 64:828–839

    Article  CAS  PubMed  Google Scholar 

  84. Chan JL, Moschos SJ, Bullen J, Heist K, Li X, Kim Y-B et al (2005) Recombinant methionyl human leptin administration activates signal transducer and activator of transcription 3 signaling in peripheral blood mononuclear cells in vivo and regulates soluble tumor necrosis factor-α receptor levels in humans with relative leptin deficiency. J Clin Endocrinol Metab 90:1625–1631

    Article  CAS  PubMed  Google Scholar 

  85. Chen P-C, Kryukova YN, Shyng S-L (2013) Leptin regulates KATP channel trafficking in pancreatic β-Cells by a signaling mechanism involving AMP-activated Protein Kinase (AMPK) and cAMP-dependent Protein Kinase (PKA). J Biol Chem 288:34098–34109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sáinz N, Barrenetxe J, Moreno-Aliaga MJ, Martínez JA (2015) Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism 64:35–46

    Article  PubMed  CAS  Google Scholar 

  87. Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T et al (1999) Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 282:1568–1575

    Article  CAS  PubMed  Google Scholar 

  88. Abel ED, Litwin SE, Sweeney G (2008) Cardiac remodeling in obesity. Physiol Rev 88:389–419

    Article  CAS  PubMed  Google Scholar 

  89. Bjørbæk C, El-Haschimi K, Frantz JD, Flier JS (1999) The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem 274:30059–30065

    Article  PubMed  Google Scholar 

  90. Santos-Alvarez J, Goberna R, Sánchez-Margalet V (1999) Human leptin stimulates proliferation and activation of human circulating monocytes. Cell Immunol 194:6–11

    Article  CAS  PubMed  Google Scholar 

  91. Gabay C, Dreyer M, Pellegrinelli N, Chicheportiche R, Meier CA (2001) Leptin directly induces the secretion of interleukin 1 receptor antagonist in human monocytes. J Clin Endocrinol Metab 86:783–791

    CAS  PubMed  Google Scholar 

  92. Cseh K, Baranyi E, Melczer Z, Csákány GM, Speer G, Kovács M et al (2002) The pathophysiological influence of leptin and the tumor necrosis factor system on maternal insulin resistance: negative correlation with anthropometric parameters of neonates in gestational diabetes. Gynecol Endocrinol 16:453–460

    Article  CAS  PubMed  Google Scholar 

  93. Kautzky-Willer A, Pacini G, Tura A, Bieglmayer C, Schneider B, Ludvik B et al (2001) Increased plasma leptin in gestational diabetes. Diabetologia 44:164–172

    Article  CAS  PubMed  Google Scholar 

  94. Chen D, Xia G, Xu P, Dong M (2010) Peripartum serum leptin and soluble leptin receptor levels in women with gestational diabetes. Acta Obstet Gynecol Scand 89:1595–1599

    Article  CAS  PubMed  Google Scholar 

  95. Maple-Brown L, Ye C, Hanley AJ, Connelly PW, Sermer M, Zinman B et al (2012) Maternal pregravid weight is the primary determinant of serum leptin and its metabolic associations in pregnancy, irrespective of gestational glucose tolerance status. J Clin Endocrinol Metab 97:4148–4155

    Article  CAS  PubMed  Google Scholar 

  96. Hou W, Meng X, Zhao A, Zhao W, Pan J, Tang J et al (2018) Development of multimarker diagnostic models from metabolomics analysis for Gestational Diabetes Mellitus (GDM). Mol Cell Proteomics 17:431–441

    Article  CAS  PubMed  Google Scholar 

  97. Chan T-F, Chen H-S, Chen Y-C, Lee C-H, Chou F-H, Chen I-J et al (2007) Increased serum retinol-binding protein 4 concentrations in women with gestational diabetes mellitus. Reprod Sci 14:169–174

    Article  CAS  PubMed  Google Scholar 

  98. Choi SH, Kwak SH, Youn B-S, Lim S, Park YJ, Lee H et al (2008) High plasma retinol binding Protein-4 and low plasma adiponectin concentrations are associated with severity of glucose intolerance in women with previous gestational diabetes mellitus. J Clin Endocrinol Metab 93:3142–3148

    Article  CAS  PubMed  Google Scholar 

  99. Du C, Kong F (2019) A prospective study of maternal plasma concentrations of retinol-binding protein 4 and risk of gestational diabetes mellitus. Ann Nutr Metab 74:1–8

    Article  CAS  PubMed  Google Scholar 

  100. Krzyzanowska K, Zemany L, Krugluger W, Schernthaner GH, Mittermayer F, Schnack C et al (2008) Serum concentrations of retinol-binding protein 4 in women with and without gestational diabetes. Diabetologia 51:1115–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lewandowski KC, Stojanovic N, Bienkiewicz M, Tan BK, Prelevic GM, Press M et al (2008) Elevated concentrations of retinol-binding protein-4 (RBP-4) in gestational diabetes mellitus: Negative correlation with soluble vascular cell adhesion molecule-1 (sVCAM-1). Gynecol Endocrinol 24:300–305

    Article  CAS  PubMed  Google Scholar 

  102. Su Y-X, Hong J, Yan Q, Xu C, Gu W-Q, Zhang Y-F et al (2010) Increased serum retinol-binding protein-4 levels in pregnant women with and without gestational diabetes mellitus. Diabetes Metab 36:470–475

    Article  CAS  PubMed  Google Scholar 

  103. Nanda S, Nikoletakis G, Markova D, Poon LCY, Nicolaides KH (2013) Maternal serum retinol-binding protein-4 at 11–13weeks’ gestation in normal and pathological pregnancies. Metabolism 62:814–819

    Article  CAS  PubMed  Google Scholar 

  104. Fonseca-Alaniz MH, Takada J, Alonso-Vale MIC, Lima FB (2007) Adipose tissue as an endocrine organ: from theory to practice. J Pediatr 83:S192–S203

    Article  Google Scholar 

  105. de Courten BV, Degawa-Yamauchi M, Considine RV, Tataranni PA (2004) High serum resistin is associated with an increase in adiposity but not a worsening of insulin resistance in pima indians. Diabetes 53:1279–1284

    Article  Google Scholar 

  106. Jamaluddin MS, Weakley SM, Yao Q, Chen C (2012) Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br J Pharmacol 165:622–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lobo TF, Torloni MR, Gueuvoghlanian-Silva BY, Mattar R, Daher S (2013) Resistin concentration and gestational diabetes: a systematic review of the literature. J Reprod Immunol 97:120–127

    Article  CAS  PubMed  Google Scholar 

  108. Lowe LP, Metzger BE, Lowe WL, Dyer AR, McDade TW, McIntyre HD (2010) Inflammatory mediators and glucose in pregnancy: results from a subset of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. J Clin Endocrinol Metab 95:5427–5434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Moschen AR, Kaser A, Enrich B, Mosheimer B, Theurl M, Niederegger H et al (2007) Visfatin, an Adipocytokine with proinflammatory and immunomodulating properties. J Immunol 178:1748–1758

    Article  CAS  PubMed  Google Scholar 

  110. Krzyzanowska K, Krugluger W, Mittermayer F, Rahman R, Haider D, Shnawa N et al (2006) Increased visfatin concentrations in women with gestational diabetes mellitus. Clin Sci 110:605–609

    Article  CAS  Google Scholar 

  111. Ferreira AFA, Rezende JC, Vaikousi E, Akolekar R, Nicolaides KH (2011) Maternal Serum Visfatin at 11–13 weeks of gestation in gestational diabetes mellitus. Clin Chem 57:609–613

    Article  CAS  PubMed  Google Scholar 

  112. Herrera E, Lasunción MA, Gomez-Coronado D, Aranda P, López-Luna P, Maier I (1988) Role of lipoprotein lipase activity on lipoprotein metabolism and the fate of circulating triglycerides in pregnancy. Am J Obstet Gynecol 158:1575–1583

    Article  CAS  PubMed  Google Scholar 

  113. Salzer L, Tenenbaum-Gavish K, Hod M (2015) Metabolic disorder of pregnancy (understanding pathophysiology of diabetes and preeclampsia). Best Pract Res Clin Obstet Gynaecol 29:328–338

    Article  PubMed  Google Scholar 

  114. Butte NF (2000) Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus. Am J Clin Nutr 71:1256s–1261s

    Article  CAS  PubMed  Google Scholar 

  115. Di Cianni G, Miccoli R, Volpe L, Lencioni C, Ghio A, Giovannitti MG et al (2005) Maternal triglyceride levels and newborn weight in pregnant women with normal glucose tolerance. Diabet Med 22:21–25

    Article  PubMed  Google Scholar 

  116. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid–induced insulin resistance. J Clin Invest 116:3015–3025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Böni-Schnetzler M, Boller S, Debray S, Bouzakri K, Meier DT, Prazak R et al (2009) Free fatty acids induce a Proinflammatory response in islets via the abundantly expressed Interleukin-1 Receptor I. Endocrinology 150:5218–5229

    Article  PubMed  CAS  Google Scholar 

  118. Chen X, Scholl TO, Leskiw M, Savaille J, Stein TP (2010) Differences in maternal circulating fatty acid composition and dietary fat intake in women with gestational diabetes mellitus or mild gestational hyperglycemia. Diabetes Care 33:2049–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Scholtens DM, Muehlbauer MJ, Daya NR, Stevens RD, Dyer AR, Lowe LP et al (2014) Metabolomics reveals broad-scale metabolic perturbations in hyperglycemic mothers during pregnancy. Diabetes Care 37:158–166

    Article  CAS  PubMed  Google Scholar 

  120. Sivan E, Homko CJ, Whittaker PG, Reece EA, Chen X, Boden G (1998) Free fatty acids and insulin resistance during pregnancy. J Clin Endocrinol Metab 83:2338–2342

    CAS  PubMed  Google Scholar 

  121. Segura MT, Demmelmair H, Krauss-Etschmann S, Nathan P, Dehmel S, Padilla MC et al (2017) Maternal BMI and gestational diabetes alter placental lipid transporters and fatty acid composition. Placenta 57:144–151

    Article  CAS  PubMed  Google Scholar 

  122. Ryckman KK, Spracklen CN, Smith CJ, Robinson JG, Saftlas AF (2015) Maternal lipid levels during pregnancy and gestational diabetes: a systematic review and meta-analysis. BJOG Int J Obstet Gynaecol 122:643–651

    Article  CAS  Google Scholar 

  123. Li P, Yin Y-L, Li D, Kim SW, Wu G (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  CAS  PubMed  Google Scholar 

  124. Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH (2010) Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS One 5:e15234. https://doi.org/10.1371/journal.pone.0015234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17:448–453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Tillin T, Hughes AD, Wang Q, Würtz P, Ala-Korpela M, Sattar N et al (2015) Diabetes risk and amino acid profiles: cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE (Southall And Brent REvisited) Study. Diabetologia 58:968–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tremblay F, Marette A (2001) Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J Biol Chem 276:38052–38060

    CAS  PubMed  Google Scholar 

  128. Drummond MJ, Bell JA, Fujita S, Dreyer HC, Glynn EL, Volpi E et al (2008) Amino acids are necessary for the insulin-induced activation of mTOR/S6K1 signaling and protein synthesis in healthy and insulin resistant human skeletal muscle. Clin Nutr 27:447–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Leibowitz G, Cerasi E, Ketzinel-Gilad M (2008) The role of mTOR in the adaptation and failure of beta-cells in type 2 diabetes. Diabetes Obes Metab 10(Suppl 4):157–169

    Article  CAS  PubMed  Google Scholar 

  130. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  CAS  PubMed  Google Scholar 

  132. Laberge R-M, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L et al (2015) MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 17:1049–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhenyukh O, Civantos E, Ruiz-Ortega M, Sánchez MS, Vázquez C, Peiró C et al (2017) High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radic Biol Med 104:165–177

    Article  CAS  PubMed  Google Scholar 

  134. Cetin I, de Santis MSN, Taricco E, Radaelli T, Teng C, Ronzoni S et al (2005) Maternal and fetal amino acid concentrations in normal pregnancies and in pregnancies with gestational diabetes mellitus. Am J Obstet Gynecol 192:610–617

    Article  CAS  PubMed  Google Scholar 

  135. Enquobahrie DA, Denis M, Tadesse MG, Gelaye B, Ressom HW, Williams MA (2015) Maternal early pregnancy serum metabolites and risk of gestational diabetes mellitus. J Clin Endocrinol Metab 100:4348–4356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rahimi N, Razi F, Nasli-Esfahani E, Qorbani M, Shirzad N, Larijani B (2017) Amino acid profiling in the gestational diabetes mellitus. J Diabetes Metab Disord 16:13. https://doi.org/10.1186/s40200-016-0283-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bentley-Lewis R, Huynh J, Xiong G, Lee H, Wenger J, Clish C et al (2015) Metabolomic profiling in the prediction of gestational diabetes mellitus. Diabetologia 58:1329–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. de Seymour JV, Conlon CA, Sulek K, Villas Bôas SG, McCowan LME, Kenny LC et al (2014) Early pregnancy metabolite profiling discovers a potential biomarker for the subsequent development of gestational diabetes mellitus. Acta Diabetol 51:887–890

    Article  PubMed  CAS  Google Scholar 

  139. Nakamura S, Takamura T, Matsuzawa-Nagata N, Takayama H, Misu H, Noda H et al (2009) Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J Biol Chem 284:14809–14818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Keaney JF, Larson MG, Vasan RS, Wilson PWF, Lipinska I, Corey D et al (2003) Obesity and systemic oxidative stress. Arterioscler Thromb Vasc Biol 23:434–439

    Article  CAS  PubMed  Google Scholar 

  141. Herrera E, Ortega-Senovilla H (2010) Disturbances in lipid metabolism in diabetic pregnancy – Are these the cause of the problem? Best Pract Res Clin Endocrinol Metab 24:515–525

    Article  CAS  PubMed  Google Scholar 

  142. Carone D, Loverro G, Greco P, Capuano F, Selvaggi L (1993) Lipid peroxidation products and antioxidant enzymes in red blood cells during normal and diabetic pregnancy. Eur J Obstet Gynecol Reprod Biol 51:103–109

    Article  CAS  PubMed  Google Scholar 

  143. Kinalski M, Śledziewski A, Telejko B, Kowalska I, Krętowski A, Zarzycki W et al (2001) Lipid peroxidation, antioxidant defence and acid-base status in cord blood at birth: the influence of diabetes. Horm Metab Res 33:227–231

    Article  CAS  PubMed  Google Scholar 

  144. Cuffe JS, Xu ZC, Perkins AV (2017) Biomarkers of oxidative stress in pregnancy complications. Biomark Med 11:295–306

    Article  CAS  PubMed  Google Scholar 

  145. Karowicz-Bilinska A, Kędziora-Kornatowska K, Bartosz G (2007) Indices of oxidative stress in pregnancy with fetal growth restriction. Free Radic Res 41:870–873

    Article  CAS  PubMed  Google Scholar 

  146. Aydemir B, Baykara O, Cinemre FBS, Cinemre H, Tuten A, Kiziler AR et al (2016) LOX-1 gene variants and maternal levels of plasma oxidized LDL and malondialdehyde in patients with gestational diabetes mellitus. Arch Gynecol Obstet 293:517–527

    Article  CAS  PubMed  Google Scholar 

  147. Shang M, Dong X, Hou L (2018) Correlation of adipokines and markers of oxidative stress in women with gestational diabetes mellitus and their newborns. J Obstet Gynaecol Res 44:637–646

    Article  CAS  PubMed  Google Scholar 

  148. León-Reyes G, Guzmán-Grenfell AM, Medina-Navarro R, Montoya-Estrada A, Moreno-Eutimio MA, Fuentes-García S et al (2018) Is gestational diabetes mellitus in obese women predicted by oxidative damage in red blood cells? Gynecol Endocrinol 34:995–1000

    Article  PubMed  CAS  Google Scholar 

  149. Arribas L, Almansa I, Miranda M, Muriach M, Romero FJ, Villar VM (2016) Serum Malondialdehyde concentration and glutathione peroxidase activity in a longitudinal study of gestational diabetes. PLoS One 11:e0155353. https://doi.org/10.1371/journal.pone.0155353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Karacay Ö, Sepici-Dincel A, Karcaaltincaba D, Sahin D, Yalvaç S, Akyol M et al (2010) A quantitative evaluation of total antioxidant status and oxidative stress markers in preeclampsia and gestational diabetic patients in 24–36 weeks of gestation. Diabetes Res Clin Pract 89:231–238

    Article  CAS  PubMed  Google Scholar 

  151. Parthasarathy S, Raghavamenon A, Garelnabi MO, Santanam N (2010) Oxidized low-density lipoprotein. Methods Mol Biol 610:403–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ghaneei A, Yassini S, Ghanei ME, Shojaoddiny-Ardekani A (2015) Increased serum oxidized low-density lipoprotein levels in pregnancies complicated by gestational diabetes mellitus. Iran J Reprod Med 13:421–424

    PubMed  PubMed Central  Google Scholar 

  153. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  PubMed  Google Scholar 

  154. Lyall F, Gibson JL, Greer IA, Brockman DE, Eis AL, Myatt L (1998) Increased Nitrotyrosine in the diabetic placenta: evidence for oxidative stress. Diabetes Care 21:1753–1758

    Article  CAS  PubMed  Google Scholar 

  155. Myatt L, Cui X (2004) Oxidative stress in the placenta. Histochem Cell Biol 122:369–382

    Article  CAS  PubMed  Google Scholar 

  156. Singh VP, Bali A, Singh N, Jaggi AS (2014) Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol 18(1):14

    Article  CAS  Google Scholar 

  157. Lappas M, Permezel M, Rice GE (2008) Advanced glycation endproducts mediate pro-inflammatory actions in human gestational tissues via nuclear factor-κB and extracellular signal-regulated kinase 1/2. J Endocrinol 193:269–277

    Article  CAS  Google Scholar 

  158. Harsem NK, Braekke K, Torjussen T, Hanssen K, Staff AC (2008) Advanced glycation end products in pregnancies complicated with diabetes mellitus or preeclampsia. Hypertens Pregnancy 27:374–386

    Article  CAS  PubMed  Google Scholar 

  159. Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal Biochem 27:502–522

    Article  CAS  PubMed  Google Scholar 

  160. Peuchant E, Brun J-L, Rigalleau V, Dubourg L, Thomas M-J, Daniel J-Y et al (2004) Oxidative and antioxidative status in pregnant women with either gestational or type 1 diabetes. Clin Biochem 37:293–298

    Article  CAS  PubMed  Google Scholar 

  161. Abbaspour N, Hurrell R, Kelishadi R (2014) Review on iron and its importance for human health. J Res Med Sci 19:164–174

    PubMed  PubMed Central  Google Scholar 

  162. Fenton HJH (1894) LXXIII.—Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910

    Article  CAS  Google Scholar 

  163. Zhuang T, Han H, Yang Z (2014) Iron, oxidative stress and gestational diabetes. Nutrients 6:3968–3980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zein S, Rachidi S, Hininger-Favier I (2014) Is oxidative stress induced by iron status associated with gestational diabetes mellitus? J Trace Elem Med Biol 28:65–69

    Article  CAS  PubMed  Google Scholar 

  165. Kalantar-Zadeh K, Rodriguez RA, Humphreys MH (2004) Association between serum ferritin and measures of inflammation, nutrition and iron in haemodialysis patients. Nephrol Dial Transplant 19:141–149

    Article  CAS  PubMed  Google Scholar 

  166. Lim M-K, Lee C-K, Ju YS, Cho YS, Lee M-S, Yoo B et al (2001) Serum ferritin as a serologic marker of activity in systemic lupus erythematosus. Rheumatol Int 20:89–93

    Article  CAS  PubMed  Google Scholar 

  167. Ford ES, Cogswell ME (1999) Diabetes and serum ferritin concentration among U.S. adults. Diabetes Care 22:1978–1983

    Article  CAS  PubMed  Google Scholar 

  168. Fumeron F, Péan F, Driss F, Balkau B, Tichet J, Marre M et al (2006) Ferritin and transferrin are both predictive of the onset of hyperglycemia in men and women over 3 years: the data from an epidemiological study on the Insulin Resistance Syndrome (DESIR) study. Diabetes Care 29:2090–2094

    Article  CAS  PubMed  Google Scholar 

  169. Chen J, Tan B, Karteris E, Zervou S, Digby J, Hillhouse EW et al (2006) Secretion of adiponectin by human placenta: differential modulation of adiponectin and its receptors by cytokines. Diabetologia 49:1292–1302. https://doi.org/10.1007/s00125-006-0194-7

    Article  CAS  PubMed  Google Scholar 

  170. Khambalia AZ, Aimone A, Nagubandi P, Roberts CL, McElduff A, Morris JM et al (2016) High maternal iron status, dietary iron intake and iron supplement use in pregnancy and risk of gestational diabetes mellitus: a prospective study and systematic review. Diabet Med 33:1211–1221

    Article  CAS  PubMed  Google Scholar 

  171. Amiri FN, Basirat Z, Omidvar S, Sharbatdaran M, Tilaki KH, Pouramir M (2013) Comparison of the serum iron, ferritin levels and total iron-binding capacity between pregnant women with and without gestational diabetes. J Nat Sci Biol Med 4:302–305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Derbent AU, Simavli SA, Kaygusuz I, Gumus II, Yılmaz S, Yildirim M et al (2013) Serum hepcidin is associated with parameters of glucose metabolism in women with gestational diabetes mellitus. J Matern Fetal Neonatal Med 26:1112–1115

    Article  CAS  PubMed  Google Scholar 

  173. Akhlaghi F, Bagheri SM, Rajabi O (2012) A comparative study of relationship between micronutrients and gestational diabetes. ISRN Obstet Gynecol 2012:470419. https://doi.org/10.5402/2012/470419

    Article  PubMed  PubMed Central  Google Scholar 

  174. Park S, Park JY, Lee JH, Kim S-H (2015) Plasma levels of lysine, tyrosine, and valine during pregnancy are independent risk factors of insulin resistance and gestational diabetes. Metab Syndr Relat Disord 13:64–70

    Article  CAS  PubMed  Google Scholar 

  175. Chen X, Scholl TO, Stein TP (2006) Association of Elevated Serum Ferritin levels and the risk of gestational diabetes mellitus in pregnant women: the Camden Study. Diabetes Care 29:1077–1082

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Lungile Khambule is supported by National Research Foundation (NRF) and the University of the Witwatersrand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lungile Khambule .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khambule, L., George, J.A. (2019). The Role of Inflammation in the Development of GDM and the Use of Markers of Inflammation in GDM Screening. In: Guest, P. (eds) Reviews on Biomarker Studies of Metabolic and Metabolism-Related Disorders. Advances in Experimental Medicine and Biology(), vol 1134. Springer, Cham. https://doi.org/10.1007/978-3-030-12668-1_12

Download citation

Publish with us

Policies and ethics