Skip to main content

Musculoskeletal Infection of the Hip

  • Chapter
  • First Online:
The Pediatric and Adolescent Hip

Abstract

Anatomic characteristics of the growing bone, joint and muscles of the hip predispose it to be the most common site of infection in children. Without rapid diagnosis and treatment, children may suffer from a wide range of devastating complications such as avascular necrosis of the proximal femoral epiphysis or even death. Unfortunately, clinical features of hip infection are often indistinguishable from trauma, neoplasm and rheumatologic conditions. In addition, current culturing techniques are inefficient relative to the rapid clinical decision-making required to avoid complications. Fortunately, modern techniques of monitoring the acute phase response and utilizing improved imaging modalities permit rapid diagnosis, risk assessment and monitoring of efficacious antibiotic and surgical treatment. Orthopaedic surgeons must necessarily be facile at making a rapid diagnosis and providing rapid antibiotic and potentially surgical treatment to avoid the morbidity and mortality of peri-hip infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang C-L, Wang S-M, Yang Y-J, Tsai C-H, Liu C-C. Septic arthritis in children: relationship of causative pathogens, complications, and outcome. J Microbiol Immunol Infect. 2003;36:41–6.

    PubMed  Google Scholar 

  2. An TJ, Benvenuti MA, Mignemi ME, Thomsen IP, Schoenecker JG. Pediatric musculoskeletal infection: hijacking the acute phase response. JBJS Rev. 2016;4:pii: 01874474-201609000-00001. https://doi.org/10.2106/JBJS.RVW.15.00099.

    Article  Google Scholar 

  3. Gafur OA, Copley LAB, Hollmig ST, Browne RH, Thornton LA, Crawford SE. The impact of the current epidemiology of pediatric musculoskeletal infection on evaluation and treatment guidelines. J Pediatr Orthop. 2008;28:777–85. https://doi.org/10.1097/BPO.0b013e318186eb4b.

    Article  PubMed  Google Scholar 

  4. Benvenuti MA, An TJ, Mignemi ME, Martus JE, Thomsen IP, Schoenecker JG. Effects of antibiotic timing on culture results and clinical outcomes in pediatric musculoskeletal infection. J Pediatr Orthop. 2016. https://doi.org/10.1097/BPO.0000000000000884.

    Article  PubMed  Google Scholar 

  5. Benvenuti MA, An TJ, Mignemi ME, Thomsen IP, Martus JE, Schoenecker JG. A clinical prediction algorithm to stratify pediatric musculoskeletal infection by severity. J Pediatr Orthop. 2019;39:153–7. https://doi.org/10.1097/BPO.0000000000000880.

    Article  PubMed  Google Scholar 

  6. Benvenuti M, An T, Amaro E, Lovejoy S, Mencio G, Martus J, et al. Double-edged sword: musculoskeletal infection provoked acute phase response in children. Orthop Clin North Am. 2017;48:181–97. https://doi.org/10.1016/j.ocl.2016.12.009.

    Article  PubMed  Google Scholar 

  7. Amaro E, Marvi T, Posey S, Benvenuti MA, An TJ, Dale K, et al. C-reactive protein predicts risk of venous thromboembolism in pediatric musculoskeletal infection. J Pediatr Orthop. 2019;39(1):e62–7.

    Article  PubMed  Google Scholar 

  8. Copley LA, Barton T, Garcia C, Sun D, Gaviria-Agudelo C, Gheen WT, et al. A proposed scoring system for assessment of severity of illness in pediatric acute hematogenous osteomyelitis using objective clinical and laboratory findings. Pediatr Infect Dis J. 2014;33:35–41. https://doi.org/10.1097/INF.0000000000000002.

    Article  PubMed  Google Scholar 

  9. Mignemi ME, Benvenuti MA, An TJ, Martus JE, Mencio GA, Lovejoy SA, et al. A novel classification system based on dissemination of musculoskeletal infection is predictive of hospital outcomes. J Pediatr Orthop. 2018;38:1. https://doi.org/10.1097/BPO.0000000000000811.

    Article  Google Scholar 

  10.  Floyed RL, Steele RW. Culture-negative osteomyelitis. Pediatr Infect Dis J. 2003;22:731–6. https://doi.org/10.1097/01.inf.0000078901.26909.cf.

    Article  PubMed  Google Scholar 

  11.  Clark P, Davidson D, Letts M, Lawton L, Jawadi A. Necrotizing fasciitis secondary to chickenpox infection in children. Can J Surg. 2003;46:9–14.

    PubMed  PubMed Central  Google Scholar 

  12.  Mills WJ, Mosca VS, Nizet V. Orthopaedic manifestations of invasive group A streptococcal infections complicating primary varicella. J Pediatr Orthop. 1996;16:522–8.

    Article  CAS  PubMed  Google Scholar 

  13.  Hobo T. Zur pathogenese der akuten haematogenen osteomyelitis, mit breucksichtigungder vitalfarbungs leher. Acta Sch Med Kioto. 1921;4:1–29.

    Google Scholar 

  14.  Cunningham R, Cockayne A, Humphreys H. Clinical and molecular aspects of the pathogenesis of Staphylococcus aureus bone and joint infections. J Med Microbiol. 1996;44:157–64. https://doi.org/10.1099/00222615-44-3-157.

    Article  CAS  PubMed  Google Scholar 

  15.  Ogden JA, Lister G. The pathology of neonatal osteomyelitis. Pediatrics. 1975;55:474–8.

    CAS  PubMed  Google Scholar 

  16.  Trueta J. The normal vascular anatomy of the human femoral head during growth. J Bone Joint Surg Br. 1957;39-B:358–94.

    Article  CAS  PubMed  Google Scholar 

  17.  Cole HA, Yuasa M, Hawley G, Cates JMM, Nyman JS, Schoenecker JG. Differential development of the distal and proximal femoral epiphysis and physis in mice. Bone. 2013;52:337–46. https://doi.org/10.1016/j.bone.2012.10.011.

    Article  PubMed  Google Scholar 

  18.  Mignemi ME, Menge TJ, Cole HA, Mencio GA, Martus JE, Lovejoy S, et al. Epidemiology, diagnosis, and treatment of pericapsular pyomyositis of the hip in children. J Pediatr Orthop. 2014;34:316–25. https://doi.org/10.1097/BPO.0000000000000106.

    Article  PubMed  Google Scholar 

  19.  Nade S. Acute septic arthritis in infancy and childhood. J Bone Joint Surg Br. 1983;65:234–41.

    Article  CAS  PubMed  Google Scholar 

  20.  Soto-Hall R, Johnson LH, Johnson RA. Variations in the intra-articular pressure of the hip joint in injury and disease. A probable factor in avascular necrosis. J Bone Joint Surg Am. 1964;46:509–16.

    Article  CAS  PubMed  Google Scholar 

  21.  Trueta J, Amato VP. The vascular contribution to osteogenesis. III. Changes in the growth cartilage caused by experimentally induced ischaemia. J Bone Joint Surg Br. 1960;42-B:571–87.

    Article  CAS  PubMed  Google Scholar 

  22.  Oelsner WK, Engstrom SM, Benvenuti MA, An TJ, Jacobson RA, Polkowski GG, et al. Characterizing the acute phase response in healthy patients following total joint arthroplasty: predictable and consistent. J Arthroplasty. 2017;32(1):309–14.

    Article  PubMed  Google Scholar 

  23.  O’Keefe RJ. Fibrinolysis as a target to enhance fracture healing. N Engl J Med. 2015;373:1776–8. https://doi.org/10.1056/NEJMcibr1510090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24.  Yuasa M, Mignemi NA, Nyman JS, Duvall CL, Schwartz HS, Okawa A, et al. Fibrinolysis is essential for fracture repair and prevention of heterotopic ossification. J Clin Invest. 2015;125:3117–31. https://doi.org/10.1172/JCI80313.

    Article  PubMed  PubMed Central  Google Scholar 

  25.  Mignemi ME, Langdon N, Schoenecker J. Vitamin K-dependent coagulopathy in pediatric osteomyelitis. JBJS Case Connect. 2013;3:1–6.

    Article  Google Scholar 

  26.  Morrissy RT, Haynes DW. Acute hematogenous osteomyelitis: a model with trauma as an etiology. J Pediatr Orthop. 1989;9:447–56.

    Article  CAS  PubMed  Google Scholar 

  27.  Whalen JL, Fitzgerald RHJ, Morrissy RT. A histological study of acute hematogenous osteomyelitis following physeal injuries in rabbits. J Bone Joint Surg Am. 1988;70:1383–92.

    Article  CAS  PubMed  Google Scholar 

  28.  Ciampolini J, Harding KG. Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often? Postgrad Med J. 2000;76:479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29.  Song KM, Sloboda JF. Acute hematogenous osteomyelitis in children. J Am Acad Orthop Surg. 2001;9:166–75.

    Article  CAS  PubMed  Google Scholar 

  30.  Dodwell ER. Osteomyelitis and septic arthritis in children: current concepts. Curr Opin Pediatr. 2013;25:58–63. https://doi.org/10.1097/MOP.0b013e32835c2b42.

    Article  CAS  PubMed  Google Scholar 

  31.  Blyth MJ, Kincaid R, Craigen MA, Bennet GC. The changing epidemiology of acute and subacute haematogenous osteomyelitis in children. J Bone Joint Surg Br. 2001;83:99–102.

    Article  CAS  PubMed  Google Scholar 

  32.  Howard AW, Viskontas D, Sabbagh C. Reduction in osteomyelitis and septic arthritis related to Haemophilus influenzae type B vaccination. J Pediatr Orthop. 1999;19:705–9.

    CAS  PubMed  Google Scholar 

  33.  Yagupsky P, Erlich Y, Ariela S, Trefler R, Porat N. Outbreak of Kingella kingae skeletal system infections in children in daycare. Pediatr Infect Dis J. 2006;25:526–32. https://doi.org/10.1097/01.inf.0000215243.42501.4f.

    Article  PubMed  Google Scholar 

  34.  GILLESPIE WJ. The epidemiology of acute haematogenous osteomyelitis of childhood. Int J Epidemiol. 1985;14:600–6. https://doi.org/10.1093/ije/14.4.600.

    Article  CAS  PubMed  Google Scholar 

  35.  Riise ØR, Kirkhus E, Handeland KS, Flatø B, Reiseter T, Cvancarova M, et al. Childhood osteomyelitis-incidence and differentiation from other acute onset musculoskeletal features in a population-based study. BMC Pediatr. 2008;8:45. https://doi.org/10.1186/1471-2431-8-45.

    Article  PubMed  PubMed Central  Google Scholar 

  36.  Street M, Puna R, Huang M, Crawford H. Pediatric acute hematogenous osteomyelitis. J Pediatr Orthop. 2015;35:634–9. https://doi.org/10.1097/BPO.0000000000000332.

    Article  PubMed  Google Scholar 

  37.  Sonnen GM, Henry NK. Pediatric bone and joint infections. Diagnosis and antimicrobial management. Pediatr Clin N Am. 1996;43:933–47.

    Article  CAS  Google Scholar 

  38.  Mignemi ME, Martus JE, Bracikowski AC, Lovejoy SA, Mencio GA, Schoenecker JG. The spectrum of group a streptococcal joint pathology in the acute care setting. Pediatr Emerg Care. 2012;28:1185–9. https://doi.org/10.1097/PEC.0b013e318271a658.

    Article  PubMed  Google Scholar 

  39.  Kocher MS, Zurakowski D, Kasser JR. Differentiating between septic arthritis and transient synovitis of the hip in children: an evidence-based clinical prediction algorithm. J Bone Joint Surg Am. 1999;81:1662–70. https://doi.org/10.1007/978-1-4471-5451-8_156.

    Article  CAS  PubMed  Google Scholar 

  40.  Kremers HM, Nwojo ME, Ransom JE, Wood-Wentz CM, Melton LJ 3rd, Huddleston PM 3rd. Trends in the epidemiology of osteomyelitis: a population-based study, 1969 to 2009. J Bone Joint Surg Am. 2015;97:837–45. https://doi.org/10.2106/JBJS.N.01350.

    Article  PubMed  PubMed Central  Google Scholar 

  41.  Hann IM, Gupta S, Palmer MK, Morris-Jones PH. The prognostic significance of radiological and symptomatic bone involvement in childhood acute lymphoblastic leukaemia. Med Pediatr Oncol. 1979;6:51–5.

    Article  CAS  PubMed  Google Scholar 

  42.  Rogalsky RJ, Black GB, Reed MH. Orthopaedic manifestations of leukemia in children. J Bone Joint Surg Am. 1986;68:494–501.

    Article  CAS  PubMed  Google Scholar 

  43.  Birdi N, Allen U, D’Astous J. Poststreptococcal reactive arthritis mimicking acute septic arthritis: a hospital-based study. J Pediatr Orthop. 1995;15:661–5.

    Article  CAS  PubMed  Google Scholar 

  44.  Bont L, Brus F, Dijkman-Neerincx RH, Jansen TL, Meyer JW, Janssen M. The clinical spectrum of post-streptococcal syndromes with arthritis in children. Clin Exp Rheumatol. 1998;16:750–2.

    CAS  PubMed  Google Scholar 

  45.  Forbes-Amrhein MM, Marine MB, Wanner MR, Roth TD, Davis JT, Ravi AK, et al. Journal Club: can coronal STIR be used as screening for acute nontraumatic hip pain in children? AJR Am J Roentgenol. 2017;209:676–83. https://doi.org/10.2214/AJR.16.17685.

    Article  PubMed  Google Scholar 

  46.  Tuson CE, Hoffman EB, Mann MD. Isotope bone scanning for acute osteomyelitis and septic arthritis in children. J Bone Joint Surg Br. 1994;76:306–10.

    Article  CAS  PubMed  Google Scholar 

  47.  Bower GD, Sprague P, Geijsel H, Holt K, Lovegrove FT. Isotope bone scans in the assessment of children with hip pain or limp. Pediatr Radiol. 1985;15:319–23.

    Article  CAS  PubMed  Google Scholar 

  48.  Al-Mayahi M, Cian A, Lipsky BA, Suvà D, Müller C, Landelle C, et al. Administration of antibiotic agents before intraoperative sampling in orthopedic infections alters culture results. J Infect. 2015. https://doi.org/10.1016/j.jinf.2015.08.002.

    Article  PubMed  Google Scholar 

  49.  Section J, Gibbons SD, Barton T, Greenberg DE, Jo C-H, Copley LAB. Microbiological culture methods for pediatric musculoskeletal infection: a guideline for optimal use. J Bone Joint Surg Am. 2015;97:441–9. https://doi.org/10.2106/JBJS.N.00477.

    Article  PubMed  Google Scholar 

  50.  Wood JB, Sesler C, Stalons D, Grigorenko E, Schoenecker JG, Creech CB, et al. Performance of TEM-PCR vs culture for bacterial identification in pediatric musculoskeletal infections. Open Forum Infect Dis. 2018;5:ofy119. https://doi.org/10.1093/ofid/ofy119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51.  Zhorne DJ, Altobelli ME, Cruz AT. Impact of antibiotic pretreatment on bone biopsy yield for children with acute hematogenous osteomyelitis. Hosp Pediatr. 2015;5:337–41. https://doi.org/10.1542/hpeds.2014-0114.

    Article  PubMed  Google Scholar 

  52.  Morley JJ, Kushner I. Serum C-reactive protein levels in disease. Ann N Y Acad Sci. 1982;389:406–18. https://doi.org/10.1111/j.1749-6632.1982.tb22153.x.

    Article  CAS  PubMed  Google Scholar 

  53.  Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999;340:448–54. https://doi.org/10.1056/NEJM199902113400607.

    Article  CAS  PubMed  Google Scholar 

  54.  Wirtz DC, Heller KD, Miltner O, Zilkens KW, Wolff JM. Interleukin-6: a potential inflammatory marker after total joint replacement. Int Orthop. 2000;24:194–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55.  Oda S, Hirasawa H, Shiga H, Nakanishi K, Matsuda K, Nakamua M. Sequential measurement of IL-6 blood levels in patients with systemic inflammatory response syndrome (SIRS)/sepsis. Cytokine. 2005;29:169–75. https://doi.org/10.1016/j.cyto.2004.10.010.

    Article  CAS  PubMed  Google Scholar 

  56.  Pape HC, van Griensven M, Rice J, Gänsslen A, Hildebrand F, Zech S, et al. Major secondary surgery in blunt trauma patients and perioperative cytokine liberation: determination of the clinical relevance of biochemical markers. J Trauma. 2001;50:989–1000.

    Article  CAS  PubMed  Google Scholar 

  57.  Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 2000;101:1767–72. https://doi.org/10.1161/01.CIR.101.15.1767.

    Article  CAS  PubMed  Google Scholar 

  58.  Tillett WS, Francis T. Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus. J Exp Med. 1930;52:561–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59.  Thompson D, Pepys MB, Wood SP. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure. 1999;7:169–77. https://doi.org/10.1016/S0969-2126(99)80023-9.

    Article  CAS  PubMed  Google Scholar 

  60.  Ballou SP, Lozanski G. Induction of inflammatory cytokine release from cultured human monocytes by C-reactive protein. Cytokine. 1992;4:361–8.

    Article  CAS  PubMed  Google Scholar 

  61.  Cermak J, Key NS, Bach RR, Balla J, Jacob HS, Vercellotti GM. C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. Blood. 1993;82:513–20.

    CAS  PubMed  Google Scholar 

  62.  Markanday A. Acute phase reactants in infections: evidence-based review and a guide for clinicians. Open Forum Infect Dis. 2015;2:ofv098. https://doi.org/10.1093/ofid/ofv098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63.  Kamath S, Lip GYH. Fibrinogen: biochemistry, epidemiology and determinants. QJM. 2003;96:711–29. https://doi.org/10.1093/qjmed/hcg129.

    Article  CAS  PubMed  Google Scholar 

  64.  Vigushin DM, Pepys MB, Hawkins PN. Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. J Clin Invest. 1993;91:1351–7. https://doi.org/10.1172/JCI116336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65.  Vanderschueren S, Deeren D, Knockaert DC, Bobbaers H, Bossuyt X, Peetermans W. Extremely elevated C-reactive protein. Eur J Intern Med. 2006;17:430–3. https://doi.org/10.1016/j.ejim.2006.02.025.

    Article  CAS  PubMed  Google Scholar 

  66.  Martin AC, Anderson D, Lucey J, Guttinger R, Jacoby PA, Mok TJ, et al. Predictors of outcome in pediatric osteomyelitis. Pediatr Infect Dis J. 2016;35:387–91. https://doi.org/10.1097/INF.0000000000001031.

    Article  PubMed  Google Scholar 

  67.  Borschitz T, Schlicht S, Siegel E, Hanke E, von Stebut E. Improvement of a clinical score for necrotizing fasciitis: “Pain Out of Proportion” and high CRP levels aid the diagnosis. PLoS One. 2015;10:e0132775. https://doi.org/10.1371/journal.pone.0132775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68.  Böttiger LE, Svedberg CA. Normal erythrocyte sedimentation rate and age. Br Med J. 1967;2:85–7.

    Article  PubMed  Google Scholar 

  69.  Sox HC, Liang MH. The erythrocyte sedimentation rate. Guidelines for rational use. Ann Intern Med. 1986;104:515–23.

    Article  PubMed  Google Scholar 

  70.  Markanday A. Diagnosing diabetic foot osteomyelitis: narrative review and a suggested 2-step score-based diagnostic pathway for clinicians. Open Forum Infect Dis. 2014;1:ofu060. https://doi.org/10.1093/ofid/ofu060.

    Article  PubMed  PubMed Central  Google Scholar 

  71.  Michail M, Jude E, Liaskos C, Karamagiolis S, Makrilakis K, Dimitroulis D, et al. The performance of serum inflammatory markers for the diagnosis and follow-up of patients with osteomyelitis. Int J Low Extrem Wounds. 2013;12:94–9. https://doi.org/10.1177/1534734613486152.

    Article  CAS  PubMed  Google Scholar 

  72.  Pääkkönen M, Kallio MJT, Kallio PE, Peltola H. Sensitivity of erythrocyte sedimentation rate and C-reactive protein in childhood bone and joint infections. Clin Orthop Relat Res. 2010;468:861–6. https://doi.org/10.1007/s11999-009-0936-1.

    Article  PubMed  Google Scholar 

  73.  Hausfater P, Garric S, Ayed SB, Rosenheim M, Bernard M, Riou B. Usefulness of procalcitonin as a marker of systemic infection in emergency department patients: a prospective study. Clin Infect Dis. 2002;34:895–901. https://doi.org/10.1086/339198.

    Article  CAS  PubMed  Google Scholar 

  74.  Poddar B, Gurjar M, Singh S, Aggarwal A, Singh R, Azim A, et al. Procalcitonin kinetics as a prognostic marker in severe sepsis/septic shock. Indian J Crit Care Med. 2015;19:140–6. https://doi.org/10.4103/0972-5229.152755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75.  Shen C-J, Wu M-S, Lin K-H, Lin W-L, Chen H-C, Wu J-Y, et al. The use of procalcitonin in the diagnosis of bone and joint infection: a systemic review and meta-analysis. Eur J Clin Microbiol Infect Dis. 2013;32:807–14. https://doi.org/10.1007/s10096-012-1812-6.

    Article  CAS  PubMed  Google Scholar 

  76.  Nijsten MW, Olinga P, The TH, de Vries EG, Koops HS, Groothuis GM, Limburg PC, ten Duis HJ, Moshage H, Hoekstra HJ, Bijzet J, Zwaveling JH. Procalcitonin behaves as a fast responding acute phase protein in vivo and in vitro. Crit Care Med. 2000;28:458–61.

    Article  CAS  PubMed  Google Scholar 

  77.  Meisner M. Pathobiochemistry and clinical use of procalcitonin. Clin Chim Acta. 2002;323:17–29.

    Article  CAS  PubMed  Google Scholar 

  78.  Monneret G, Labaune JM, Isaac C, Bienvenu F, Putet G, Bienvenu J. Procalcitonin and C-reactive protein levels in neonatal infections. Acta Paediatr. 1997;86:209–12.

    Article  CAS  PubMed  Google Scholar 

  79.  Assicot M, Gendrel D, Carsin H, Raymond J, Guilbaud J, Bohuon C. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet. 1993;341:515–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80.  Davidson J, Tong S, Hauck A, Lawson DS, da Cruz E, Kaufman J. Kinetics of procalcitonin and C-reactive protein and the relationship to postoperative infection in young infants undergoing cardiovascular surgery. Pediatr Res. 2013;74:413–9. https://doi.org/10.1038/pr.2013.124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81.  Theodorou VP, Papaioannou VE, Tripsianis GA, Panopoulou MK, Christophoridis EK, Kouliatsis GA, et al. Procalcitonin and procalcitonin kinetics for diagnosis and prognosis of intravascular catheter-related bloodstream infections in selected critically ill patients: a prospective observational study. BMC Infect Dis. 2012;12:247. https://doi.org/10.1186/1471-2334-12-247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82.  Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis. 2004;39:206–17. https://doi.org/10.1086/421997.

    Article  CAS  PubMed  Google Scholar 

  83.  Kushner I. Regulation of the acute phase response by cytokines. Perspect Biol Med. 1993;36:611–22.

    Article  CAS  PubMed  Google Scholar 

  84.  Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med. 1995;332:1351–62. https://doi.org/10.1056/NEJM199505183322008.

    Article  CAS  PubMed  Google Scholar 

  85.  Borish L, King MS, Mascali JJ, Johnson S, Coll B, Rosenwasser LJ. Transthyretin is an inhibitor of monocyte and endothelial cell interleukin-1 production. Inflammation. 1992;16:471–84.

    Article  CAS  PubMed  Google Scholar 

  86.  Frederiksen B, Christiansen P, Knudsen FU. Acute osteomyelitis and septic arthritis in the neonate, risk factors and outcome. Eur J Pediatr. 1993;152:577–80.

    Article  CAS  PubMed  Google Scholar 

  87.  Ish-Horowicz MR, McIntyre P, Nade S. Bone and joint infections caused by multiply resistant Staphylococcus aureus in a neonatal intensive care unit. Pediatr Infect Dis J. 1992;11:82–7.

    Article  CAS  PubMed  Google Scholar 

  88.  Wong M, Isaacs D, Howman-Giles R, Uren R. Clinical and diagnostic features of osteomyelitis occurring in the first three months of life. Pediatr Infect Dis J. 1995;14:1047–53.

    Article  CAS  PubMed  Google Scholar 

  89.  Castellazzi L, Mantero M, Esposito S. Update on the management of pediatric acute osteomyelitis and septic arthritis. Int J Mol Sci. 2016;17:pii: E855. https://doi.org/10.3390/ijms17060855.

    Article  CAS  Google Scholar 

  90.  Peltola H, Paakkonen M, Kallio P, Kallio MJT. Prospective, randomized trial of 10 days versus 30 days of antimicrobial treatment, including a short-term course of parenteral therapy, for childhood septic arthritis. Clin Infect Dis. 2009;48:1201–10. https://doi.org/10.1086/597582.

    Article  CAS  PubMed  Google Scholar 

  91.  Fogel I, Amir J, Bar-On E, Harel L. Dexamethasone therapy for septic arthritis in children. Pediatrics. 2015;136:e776–82. https://doi.org/10.1542/peds.2014-4025.

    Article  PubMed  Google Scholar 

  92.  Harel L, Prais D, Bar-On E, Livni G, Hoffer V, Uziel Y, et al. Dexamethasone therapy for septic arthritis in children: results of a randomized double-blind placebo-controlled study. J Pediatr Orthop. 2011;31:211–5. https://doi.org/10.1097/BPO.0b013e3182092869.

    Article  PubMed  Google Scholar 

  93.  Schlapbach LJ, Straney L, Alexander J, MacLaren G, Festa M, Schibler A, et al. Mortality related to invasive infections, sepsis, and septic shock in critically ill children in Australia and New Zealand, 2002-13: a multicentre retrospective cohort study. Lancet Infect Dis. 2015;15:46–54. https://doi.org/10.1016/S1473-3099(14)71003-5.

    Article  PubMed  Google Scholar 

  94. Herman A, Kappler JW, Marrack P, Pullen AM. Superantigens: mechanism of T-cell stimulation and role in immune responses. Annu Rev Immunol. 1991;9:745–72. https://doi.org/10.1146/annurev.iy.09.040191.003525.

    Article  CAS  PubMed  Google Scholar 

  95. Kotzin BL, Leung DY, Kappler J, Marrack P. Superantigens and their potential role in human disease. Adv Immunol. 1993;54:99–166.

    Article  CAS  PubMed  Google Scholar 

  96. Fast DJ, Schlievert PM, Nelson RD. Toxic shock syndrome-associated staphylococcal and streptococcal pyrogenic toxins are potent inducers of tumor necrosis factor production. Infect Immun. 1989;57:291–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Hackett SP, Stevens DL. Streptococcal toxic shock syndrome: synthesis of tumor necrosis factor and interleukin-1 by monocytes stimulated with pyrogenic exotoxin A and streptolysin O. J Infect Dis. 1992;165:879–85.

    Article  CAS  PubMed  Google Scholar 

  98. Stevens DL, Bryant AE, Hackett SP, Chang A, Peer G, Kosanke S, et al. Group A streptococcal bacteremia: the role of tumor necrosis factor in shock and organ failure. J Infect Dis. 1996;173:619–26.

    Article  CAS  PubMed  Google Scholar 

  99. Prucha M, Bellingan G, Zazula R. Sepsis biomarkers. Clin Chim Acta. 2015;440:97–103. https://doi.org/10.1016/j.cca.2014.11.012.

    Article  CAS  PubMed  Google Scholar 

  100. Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306:2594–605. https://doi.org/10.1001/jama.2011.1829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bouchoucha S, Benghachame F, Trifa M, Saied W, Douira W, Nessib MN, et al. Deep venous thrombosis associated with acute hematogenous osteomyelitis in children. Orthop Traumatol Surg Res. 2010;96:890–3. https://doi.org/10.1016/j.otsr.2010.05.006.

    Article  CAS  PubMed  Google Scholar 

  102. Gonzalez BE, Teruya J, Mahoney DH, Hulten KG, Edwards R, Lamberth LB, et al. Venous thrombosis associated with staphylococcal osteomyelitis in children. Pediatrics. 2006;117:1673–9. https://doi.org/10.1542/peds.2005-2009.

    Article  PubMed  Google Scholar 

  103. Hollmig ST, Copley LA, Browne RH, Grande LM, Wilson PL. Deep venous thrombosis associated with osteomyelitis in children. J Bone Joint Surg Am. 2007;89:1517–23. https://doi.org/10.2106/JBJS.F.01102.

    Article  PubMed  Google Scholar 

  104. Mantadakis E, Plessa E, Vouloumanou EK, Michailidis L, Chatzimichael A, Falagas ME. Deep venous thrombosis in children with musculoskeletal infections: the clinical evidence. Int J Infect Dis. 2012;16:e236–43. https://doi.org/10.1016/j.ijid.2011.12.012.

    Article  PubMed  Google Scholar 

  105. Gonzalez BE. Severe Staphylococcal sepsis in adolescents in the era of community-acquired methicillin-resistant Staphylococcus aureus. Pediatrics. 2005;115:642–8. https://doi.org/10.1542/peds.2004-2300.

    Article  PubMed  Google Scholar 

  106. Fourrier F, Chopin C, Goudemand J, Hendrycx S, Caron C, Rime A, et al. Septic shock, multiple organ failure, and disseminated intravascular coagulation: compared patterns of antithrombin III, protein C, and protein S deficiencies. Chest. 1992;101:816–23. https://doi.org/10.1378/chest.101.3.816.

    Article  CAS  PubMed  Google Scholar 

  107. Semeraro N, Ammollo CT, Semeraro F, Colucci M. Sepsis-associated disseminated intravascular coagulation and thromboembolic disease. Mediterr J Hematol Infect Dis. 2010;2:e2010024. https://doi.org/10.4084/MJHID.2010.024.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Stutz CM, O’Rear LD, O’Neill KR, Tamborski ME, Crosby CG, Devin CJ, et al. Coagulopathies in orthopaedics: links to inflammation and the potential of individualizing treatment strategies. J Orthop Trauma. 2013;27:236–41. https://doi.org/10.1097/BOT.0b013e318269b782.

    Article  PubMed  Google Scholar 

  109. Levi M, van der Poll T. The role of natural anticoagulants in the pathogenesis and management of systemic activation of coagulation and inflammation in critically ill patients. Semin Thromb Hemost. 2008;34:459–68. https://doi.org/10.1055/s-0028-1092876.

    Article  CAS  PubMed  Google Scholar 

  110. Levi M, van der Poll T. A short contemporary history of disseminated intravascular coagulation. Semin Thromb Hemost. 2014;40:874–80. https://doi.org/10.1055/s-0034-1395155.

    Article  PubMed  Google Scholar 

  111. de Pont A-CJM, Bakhtiari K, Hutten BA, de Jonge E, Vlasuk GP, Rote WE, et al. Endotoxaemia induces resistance to activated protein C in healthy humans. Br J Haematol. 2006;134:213–9. https://doi.org/10.1111/j.1365-2141.2006.06127.x.

    Article  CAS  PubMed  Google Scholar 

  112. Taylor FB, Stearns-Kurosawa DJ, Kurosawa S, Ferrell G, Chang AC, Laszik Z, et al. The endothelial cell protein C receptor aids in host defense against Escherichia coli sepsis. Blood. 2000;95:1680–6.

    CAS  PubMed  Google Scholar 

  113. Levi M, van der Poll T, Büller HR. Bidirectional relation between inflammation and coagulation. Circulation. 2004;109:2698–704. https://doi.org/10.1161/01.CIR.0000131660.51520.9A.

    Article  PubMed  Google Scholar 

  114. Abraham E, Reinhart K, Opal S, Demeyer I, Doig C, Rodriguez AL, et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA. 2003;290:238–47. https://doi.org/10.1001/jama.290.2.238.

    Article  CAS  PubMed  Google Scholar 

  115. Stéphan F, Hollande J, Richard O, Cheffi A, Maier-Redelsperger M, Flahault A. Thrombocytopenia in a surgical ICU. Chest. 1999;115:1363–70.

    Article  PubMed  Google Scholar 

  116. KEELING D. International normalized ratio in patients not on vitamin K antagonists. J Thromb Haemost. 2007;5:188–9. https://doi.org/10.1111/j.1538-7836.2006.02286.x.

    Article  CAS  PubMed  Google Scholar 

  117. Park MS, Martini WZ, Dubick MA, Salinas J, Butenas S, Kheirabadi BS, et al. Thromboelastography as a better indicator of hypercoagulable state after injury than prothrombin time or activated partial thromboplastin time. J Trauma. 2009;67:266–75. https://doi.org/10.1097/TA.0b013e3181ae6f1c.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Haase N, Ostrowski SR, Wetterslev J, Lange T, Møller MH, Tousi H, et al. Thromboelastography in patients with severe sepsis: a prospective cohort study. Intensive Care Med. 2015;41:77–85. https://doi.org/10.1007/s00134-014-3552-9.

    Article  PubMed  Google Scholar 

  119. Menge TJ, Cole HA, Mignemi ME, Corn WC, Martus JE, Lovejoy SA, et al. Medial approach for drainage of the obturator musculature in children. J Pediatr Orthop. 2014;34:307–15. https://doi.org/10.1097/BPO.0000000000000118.

    Article  PubMed  Google Scholar 

  120. Edmonds EW, Lin C, Farnsworth CL, Bomar JD, Upasani V V. A medial portal for hip arthroscopy in children with septic arthritis: a safety study. J Pediatr Orthop. 2016. https://doi.org/10.1097/BPO.0000000000000861.

    Article  PubMed  Google Scholar 

  121. Nusem I, McAlister A. Arthroscopic lavage for the treatment of septic arthritis of the hip in children. Acta Orthop Belg. 2012;78:730–4.

    PubMed  Google Scholar 

  122. Sanpera I, Raluy-Collado D, Sanpera-Iglesias J. Arthroscopy for hip septic arthritis in children. Orthop Traumatol Surg Res. 2016;102:87–9. https://doi.org/10.1016/j.otsr.2015.10.008.

    Article  CAS  PubMed  Google Scholar 

  123. Kemp HB, Lloyd-Roberts GC. Avascular necrosis of the capital epiphysis following osteomyelitis of the proximal femoral metaphysis. J Bone Joint Surg Br. 1974;56-B:688–97.

    Article  CAS  PubMed  Google Scholar 

  124. Emslie KR, Nade S. Acute hematogenous staphylococcal osteomyelitis: the effects of surgical drilling and curettage in an animal model. Pathology. 1986;18:227–33.

    Article  CAS  PubMed  Google Scholar 

  125. Weigl DM, Becker T, Mercado E, Bar-On E. Percutaneous aspiration and irrigation technique for the treatment of pediatric septic hip: effectiveness and predictive parameters. J Pediatr Orthop B. 2016;25:514–9. https://doi.org/10.1097/BPB.0000000000000345.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan G. Schoenecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benvenuti, M., Johnson, M., Schoenecker, J.G. (2019). Musculoskeletal Infection of the Hip. In: Alshryda, S., Howard, J., Huntley, J., Schoenecker, J. (eds) The Pediatric and Adolescent Hip. Springer, Cham. https://doi.org/10.1007/978-3-030-12003-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12003-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12002-3

  • Online ISBN: 978-3-030-12003-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics