Skip to main content

Utility of Invasive and Non-invasive Cardiovascular Research Methodologies in Drug Development for Diabetes, Obesity and NAFLD/NASH

  • Chapter
  • First Online:
Translational Research Methods in Diabetes, Obesity, and Nonalcoholic Fatty Liver Disease

Abstract

Mechanistic intersections between metabolic and cardiovascular disorders are increasingly appreciated. Novel pharmacotherapies for diabetes and obesity that may simultaneously impact metabolism and vascular function require careful evaluation from a cardiovascular safety perspective. This consideration extends to medications being developed for nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). Available methodologies, which may be classified as either invasive or non-invasive, are presently under-utilized in early phase clinical development programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tiwari G, et al. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2:2–11. https://doi.org/10.4103/2230-973X.96920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Langer R. Implantable controlled release systems. Pharmacol Ther. 1983;21:35–51.

    Article  CAS  Google Scholar 

  3. Meng E, Hoang T. Micro- and nano-fabricated implantable drug-delivery systems. Ther Deliv. 2012;3:1457–67. https://doi.org/10.4155/tde.12.132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zinman B, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28. https://doi.org/10.1056/NEJMoa1504720.

    Article  CAS  Google Scholar 

  5. Abdul-Ghani M, Del Prato S, Chilton R, DeFronzo RA. SGLT2 inhibitors and cardiovascular risk: lessons learned from the EMPA-REG OUTCOME study. Diabetes Care. 2016;39:717–25. https://doi.org/10.2337/dc16-0041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buse JB, the, L. S. C. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:1798–9. https://doi.org/10.1056/NEJMc1611289.

    Article  PubMed  Google Scholar 

  7. Gerardo R-A, Hironori N. Pathophysiology of cardiovascular disease in diabetes mellitus. Cardiovascular Endocrinology & Metabolism. 2018;7:4–9. https://doi.org/10.1097/XCE.0000000000000141.

    Article  CAS  Google Scholar 

  8. Andrew J., K. & Gerardo, R.-A. Cardiovascular outcome trials of diabetes and obesity drugs: implications for conditional approval and early phase clinical development. Pharm Med. 2017;31:399–421. https://doi.org/10.1007/s40290-018-0224-z.

    Article  CAS  Google Scholar 

  9. Cefalu WT, et al. Cardiovascular outcomes trials in type 2 diabetes: where do we go from here? reflections from a diabetes care editors’ expert forum. Diabetes Care. 2018;41:14–31. https://doi.org/10.2337/dci17-0057.

    Article  CAS  PubMed  Google Scholar 

  10. Silvestre OM, et al. Cardiohepatic interactions – from humoral theory to organ transplantation. Arq Bras Cardiol. 2014;102:e65–7.

    PubMed  PubMed Central  Google Scholar 

  11. Konerman MA, Jones JC, Harrison SA. Pharmacotherapy for NASH: current and emerging. J Hepatol. 2018;68:362–75. https://doi.org/10.1016/j.jhep.2017.10.015.

    Article  CAS  PubMed  Google Scholar 

  12. Mozos I, Luca CT. Crosstalk between oxidative and nitrosative stress and arterial stiffness. Curr Vasc Pharmacol. 2017;15:446–56.

    Article  CAS  Google Scholar 

  13. Donnelly R. Angiotensin-converting enzyme inhibitors and insulin sensitivity: metabolic effects in hypertension, diabetes, and heart failure. J Cardiovasc Pharmacol. 1992;20(Suppl 11):S38–44.

    Article  Google Scholar 

  14. Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet. 2007;369:201–7.

    Article  CAS  Google Scholar 

  15. Sattar NA, et al. The use of statins in people at risk of developing diabetes mellitus: evidence and guidance for clinical practice. Atheroscler Suppl. 2014;15:1–15. https://doi.org/10.1016/j.atherosclerosissup.2014.04.001.

    Article  PubMed  Google Scholar 

  16. Nesto RW, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. October 7, 2003. Circulation. 2003;108:2941–8. https://doi.org/10.1161/01.CIR.0000103683.99399.7E.

    Article  PubMed  Google Scholar 

  17. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–71.

    Article  CAS  Google Scholar 

  18. Itoh N, Ohta H. Pathophysiological roles of FGF signaling in the heart. Front Physiol. 2013;4:247. https://doi.org/10.3389/fphys.2013.00247.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wente W, et al. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes. 2006;55:2470–8.

    Article  CAS  Google Scholar 

  20. Pocai A. Action and therapeutic potential of oxyntomodulin. Mol Metab. 2014;3:241–51. https://doi.org/10.1016/j.molmet.2013.12.001.

    Article  CAS  PubMed  Google Scholar 

  21. Marso SP, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44. https://doi.org/10.1056/NEJMoa1607141.

    Article  CAS  PubMed  Google Scholar 

  22. Vilsboll T, et al. Semaglutide, reduction in glycated haemoglobin and the risk of diabetic retinopathy. Diabetes Obes Metab. 2018;20:889–97. https://doi.org/10.1111/dom.13172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Neal B, et al. Canagliflozin and cardiovascular and renal events in type 2 Diabetes. N Engl J Med. 2017;377:644–57. https://doi.org/10.1056/NEJMoa1611925.

    Article  CAS  Google Scholar 

  24. Mahaffey KW, et al. Canagliflozin for primary and secondary prevention of cardiovascular events: results from the CANVAS program (Canagliflozin Cardiovascular Assessment Study). Circulation. 2018;137:323–34. https://doi.org/10.1161/CIRCULATIONAHA.117.032038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Beckman JA, Creager MA. Vascular complications of diabetes. Circ Res. 2016;118:1771–85. https://doi.org/10.1161/CIRCRESAHA.115.306884.

    Article  CAS  PubMed  Google Scholar 

  26. Rawshani A, et al. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med. 2017;376:1407–18. https://doi.org/10.1056/NEJMoa1608664.

    Article  PubMed  Google Scholar 

  27. Cannon CP. Mixed dyslipidemia, metabolic syndrome, diabetes mellitus, and cardiovascular disease: clinical implications. Am J Cardiol. 2008;102:5L–9L. https://doi.org/10.1016/j.amjcard.2008.09.067.

    Article  PubMed  Google Scholar 

  28. Reaven GM. Insulin resistance: the link between obesity and cardiovascular disease. Med Clin North Am. 2011;95:875–92. https://doi.org/10.1016/j.mcna.2011.06.002.

    Article  CAS  PubMed  Google Scholar 

  29. Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest. 2017;127:1–4. https://doi.org/10.1172/JCI92035.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bril F, Cusi K. Nonalcoholic fatty liver disease: the new complication of type 2 diabetes mellitus. Endocrinol Metab Clin N Am. 2016;45:765–81. https://doi.org/10.1016/j.ecl.2016.06.005.

    Article  Google Scholar 

  31. Lonardo A, Sookoian S, Pirola CJ, Targher G. Non-alcoholic fatty liver disease and risk of cardiovascular disease. Metabolism. 2016;65:1136–50. https://doi.org/10.1016/j.metabol.2015.09.017.

    Article  CAS  PubMed  Google Scholar 

  32. Targher G, Byrne CD, Lonardo A, Zoppini G, Barbui C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: a meta-analysis. J Hepatol. 2016;65:589–600. https://doi.org/10.1016/j.jhep.2016.05.013.

    Article  PubMed  Google Scholar 

  33. Ballestri S, et al. Risk of cardiovascular, cardiac and arrhythmic complications in patients with non-alcoholic fatty liver disease. World J Gastroenterol. 2014;20:1724–45. https://doi.org/10.3748/wjg.v20.i7.1724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mantovani A. Nonalcoholic Fatty Liver Disease (NAFLD) and risk of cardiac arrhythmias: a new aspect of the liver-heart axis. J Clin Transl Hepatol. 2017;5:134–41. https://doi.org/10.14218/JCTH.2017.00005.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu H, Lu HY. Nonalcoholic fatty liver disease and cardiovascular disease. World J Gastroenterol. 2014;20:8407–15. https://doi.org/10.3748/wjg.v20.i26.8407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baldassarre MPA, Andersen A, Consoli A, Knop FK, Vilsboll T. Cardiovascular biomarkers in clinical studies of type 2 diabetes. Diabetes Obes Metab. 2018; https://doi.org/10.1111/dom.13247.

  37. Krentz AJ. Rosiglitazone: trials, tribulations and termination. Drugs. 2011;71:123–30. https://doi.org/10.2165/11585300-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  38. Barter PJ, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–22. https://doi.org/10.1056/NEJMoa0706628.

    Article  CAS  PubMed  Google Scholar 

  39. Johns DG, Duffy J, Fisher T, Hubbard BK, Forrest MJ. On- and off-target pharmacology of torcetrapib: current understanding and implications for the structure activity relationships (SAR), discovery and development of cholesteryl ester-transfer protein (CETP) inhibitors. Drugs. 2012;72:491–507. https://doi.org/10.2165/11599310-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  40. Sandler H, Dodge HT. The use of single plane angiocardiograms for the calculation of left ventricular volume in man. Am Heart J. 1968;75:325–34.

    Article  CAS  Google Scholar 

  41. Lee KB, et al. Stem cell therapy in patients with thromboangiitis obliterans: assessment of the long-term clinical outcome and analysis of the prognostic factors. Int J Stem Cells. 2011;4:88–98.

    Article  CAS  Google Scholar 

  42. Nissen SE, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006;295:1556–65. https://doi.org/10.1001/jama.295.13.jpc60002.

    Article  CAS  Google Scholar 

  43. Yeung AC, et al. Clinical evaluation of the Resolute zotarolimus-eluting coronary stent system in the treatment of de novo lesions in native coronary arteries: the RESOLUTE US clinical trial. J Am Coll Cardiol. 2011;57:1778–83. https://doi.org/10.1016/j.jacc.2011.03.005.

    Article  PubMed  Google Scholar 

  44. Ma T, Zhou B, Hsiai TK, Shung KK. A review of intravascular ultrasound-based multimodal intravascular imaging: the synergistic approach to characterizing vulnerable plaques. Ultrason Imaging. 2016;38:314–31. https://doi.org/10.1177/0161734615604829.

    Article  PubMed  Google Scholar 

  45. Nicholls SJ, Puri R. Implications of GLAGOV study. Curr Opin Lipidol. 2017; https://doi.org/10.1097/MOL.0000000000000458.

  46. Elliott MR, Thrush AJ. Measurement of resolution in intravascular ultrasound images. Physiol Meas. 1996;17:259–65.

    Article  CAS  Google Scholar 

  47. Waxman S, et al. In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. JACC Cardiovasc Imaging. 2009;2:858–68. https://doi.org/10.1016/j.jcmg.2009.05.001.

    Article  PubMed  Google Scholar 

  48. Liang S, et al. Trimodality imaging system and intravascular endoscopic probe: combined optical coherence tomography, fluorescence imaging and ultrasound imaging. Opt Lett. 2014;39:6652–5. https://doi.org/10.1364/OL.39.006652.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jang IK, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39:604–9.

    Article  Google Scholar 

  50. Allemang MT, et al. The use of dextran and carbon dioxide for optical coherence tomography in the superficial femoral artery. J Vasc Surg. 2014;59:238–40. https://doi.org/10.1016/j.jvs.2013.03.006.

    Article  PubMed  Google Scholar 

  51. Yang X, et al. Impact of ticagrelor and aspirin versus clopidogrel and aspirin in symptomatic patients with peripheral arterial disease: Thrombus burden assessed by optical coherence tomography. Cardiovasc Revasc Med. 2018; https://doi.org/10.1016/j.carrev.2018.02.013.

  52. https://clinicaltrials.gov/ct2/show/NCT03067844?recrs=ae&cond=near+infrared+spectroscopy&phase=0124&rank=6.

  53. Jaguszewski M, Klingenberg R, Landmesser U. Intracoronary near-infrared spectroscopy (NIRS) imaging for detection of lipid content of coronary plaques: current experience and future perspectives. Curr Cardiovasc Imaging Rep. 2013;6:426–30. https://doi.org/10.1007/s12410-013-9224-2.

    Article  PubMed  PubMed Central  Google Scholar 

  54. http://onlinelibrary.wiley.com/doi/10.1002/cce2.23/full.

  55. https://link.springer.com/article/10.1007%2Fs40290-017-0209-3.

  56. Puri R, et al. Near-infrared spectroscopy enhances intravascular ultrasound assessment of vulnerable coronary plaque: a combined pathological and in vivo study. Arterioscler Thromb Vasc Biol. 2015;35:2423–31. https://doi.org/10.1161/ATVBAHA.115.306118.

    Article  CAS  PubMed  Google Scholar 

  57. Brugaletta S, et al. NIRS and IVUS for characterization of atherosclerosis in patients undergoing coronary angiography. JACC Cardiovasc Imaging. 2011;4:647–55. https://doi.org/10.1016/j.jcmg.2011.03.013.

    Article  PubMed  Google Scholar 

  58. Berry C, et al. Fractional flow reserve-guided management in stable coronary disease and acute myocardial infarction: recent developments. Eur Heart J. 2015;36:3155–64. https://doi.org/10.1093/eurheartj/ehv206.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Corcoran D, Hennigan B, Berry C. Fractional flow reserve: a clinical perspective. Int J Cardiovasc Imaging. 2017;33:961–74. https://doi.org/10.1007/s10554-017-1159-2.

    Article  PubMed  PubMed Central  Google Scholar 

  60. https://clinicaltrials.gov/ct2/show/NCT01946815?cond=flow+fractional+reserve&draw=5&rank=42.

  61. Pijls NH, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334:1703–8. https://doi.org/10.1056/NEJM199606273342604.

    Article  CAS  PubMed  Google Scholar 

  62. Gotberg M, et al. Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N Engl J Med. 2017;376:1813–23. https://doi.org/10.1056/NEJMoa1616540.

    Article  PubMed  Google Scholar 

  63. Davies JE, et al. Use of the instantaneous wave-free ratio or fractional flow reserve in PCI. N Engl J Med. 2017;376:1824–34. https://doi.org/10.1056/NEJMoa1700445.

    Article  PubMed  Google Scholar 

  64. Abraham WT, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377:658–66. https://doi.org/10.1016/S0140-6736(11)60101-3.

    Article  PubMed  Google Scholar 

  65. Selvaraj S, et al. Pulmonary hypertension is associated with a higher risk of heart failure hospitalization and mortality in patients with chronic kidney disease: the Jackson Heart Study. Circ Heart Fail. 2017;10. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003940.

  66. Shin JT, Semigran MJ. Heart failure and pulmonary hypertension. Heart Fail Clin. 2010;6:215–22. https://doi.org/10.1016/j.hfc.2009.11.007.

    Article  PubMed  PubMed Central  Google Scholar 

  67. http://www.mercatormed.com/bullfrog-micro-infusion-device/.

  68. https://clinicaltrials.gov/ct2/show/NCT02756884?term=mercator&rank=7.

  69. https://clinicaltrials.gov/ct2/show/NCT02908035?term=mercator&rank=1.

  70. https://clinicaltrials.gov/ct2/show/NCT02469532?term=mercator&rank=4.

  71. Ashley EA, Niebauer J. Cardiology explained. London, England: Remedica; 2004.

    Google Scholar 

  72. Anavekar NS, Oh JK. Doppler echocardiography: a contemporary review. J Cardiol. 2009;54:347–58. https://doi.org/10.1016/j.jjcc.2009.10.001.

    Article  PubMed  Google Scholar 

  73. Gonzalez-Vilcez F, Ares M, Ayuela J, Alonso L. Combined use of pulsed and color M-mode doppler echocardiography for the estimation of pulmonary capillary wedge pressure: an empirical approach based on an analytical relation. J Am Coll Cardiol. 1999;34 https://doi.org/10.1016/S0735-1097(99)00230-2.

  74. Feigenbaum H. Role of M-mode technique in today’s echocardiography. J Am Soc Echocardiogr. 2010;23(240–257):335–247. https://doi.org/10.1016/j.echo.2010.01.015.

    Article  Google Scholar 

  75. Edner M, et al. Long-term effects on cardiac output and peripheral resistance in patients treated with enalapril after acute myocardial infarction. CONSENSUS II Multi-Echo Study Group Cooperative New Scandinavian Enalapril Survival Study. Cardiology. 1998;89:291–6. https://doi.org/10.1159/000006807.

    Article  CAS  PubMed  Google Scholar 

  76. Mor-Avi V, Sugeng L, Lang RM. Real-time 3-dimensional echocardiography: an integral component of the routine echocardiographic examination in adult patients? Circulation. 2009;119:314–29. https://doi.org/10.1161/CIRCULATIONAHA.107.751354.

    Article  PubMed  Google Scholar 

  77. Yuan C, Oikawa M, Miller Z, Hatsukami T. MRI of carotid atherosclerosis. J Nucl Cardiol. 2008;15:266–75. https://doi.org/10.1016/j.nuclcard.2008.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kerwin WS, Oikawa M, Yuan C, Jarvik GP, Hatsukami TS. MR imaging of adventitial vasa vasorum in carotid atherosclerosis. Magn Reson Med. 2008;59:507–14. https://doi.org/10.1002/mrm.21532.

    Article  CAS  PubMed  Google Scholar 

  79. Zhao XQ, et al. MR imaging of carotid plaque composition during lipid-lowering therapy a prospective assessment of effect and time course. JACC Cardiovasc Imaging. 2011;4:977–86. https://doi.org/10.1016/j.jcmg.2011.06.013.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Balu N, Chu B, Hatsukami TS, Yuan C, Yarnykh VL. Comparison between 2D and 3D high-resolution black-blood techniques for carotid artery wall imaging in clinically significant atherosclerosis. J Magn Reson Imaging. 2008;27:918–24. https://doi.org/10.1002/jmri.21282.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hingwala D, Kesavadas C, Sylaja PN, Thomas B, Kapilamoorthy TR. Multimodality imaging of carotid atherosclerotic plaque: going beyond stenosis. Indian J Radiol Imaging. 2013;23:26–34. https://doi.org/10.4103/0971-3026.113616.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kozakova M, et al. Insulin sensitivity and carotid intima-media thickness: relationship between insulin sensitivity and cardiovascular risk study. Arterioscler Thromb Vasc Biol. 2013;33:1409–17. https://doi.org/10.1161/ATVBAHA.112.300948.

    Article  CAS  PubMed  Google Scholar 

  83. Petrie JR, et al. Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5:597–609. https://doi.org/10.1016/S2213-8587(17)30194-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sabarudin A, Sun Z. Coronary CT angiography: diagnostic value and clinical challenges. World J Cardiol. 2013;5:473–83. https://doi.org/10.4330/wjc.v5.i12.473.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Patil R, Sood GK. Non-alcoholic fatty liver disease and cardiovascular risk. World J Gastrointest Pathophysiol. 2017;8:51–8. https://doi.org/10.4291/wjgp.v8.i2.51.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sharma RK, et al. Cardiac risk stratification: role of the coronary calcium score. Vasc Health Risk Manag. 2010;6:603–11.

    Article  Google Scholar 

  87. Puri R, et al. Impact of statins on serial coronary calcification during atheroma progression and regression. J Am Coll Cardiol. 2015;65:1273–82. https://doi.org/10.1016/j.jacc.2015.01.036.

    Article  CAS  Google Scholar 

  88. Pletcher MJ, et al. Using the coronary artery calcium score to guide statin therapy: a cost-effectiveness analysis. Circ Cardiovasc Qual Outcomes. 2014;7:276–84. https://doi.org/10.1161/CIRCOUTCOMES.113.000799.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wong ND, et al. Residual atherosclerotic cardiovascular disease risk in statin-treated adults: the Multi-Ethnic Study of Atherosclerosis. J Clin Lipidol. 2017;11:1223–33. https://doi.org/10.1016/j.jacl.2017.06.015.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Shah RR. The significance of QT interval in drug development. Br J Clin Pharmacol. 2002;54:188–202.

    Article  CAS  Google Scholar 

  91. Allen LA, Spertus JA. End points for comparative effectiveness research in heart failure. Heart Fail Clin. 2013;9:15–28. https://doi.org/10.1016/j.hfc.2012.09.002.

    Article  PubMed  Google Scholar 

  92. Wang J, et al. Novel biomarkers for cardiovascular risk prediction. J Geriatr Cardiol. 2017;14:135–50. https://doi.org/10.11909/j.issn.1671-5411.2017.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tousoulis D, et al. Fibrinogen and cardiovascular disease: genetics and biomarkers. Blood Rev. 2011;25:239–45. https://doi.org/10.1016/j.blre.2011.05.001.

    Article  CAS  PubMed  Google Scholar 

  94. Kume N, Mitsuoka H, Hayashida K, Tanaka M. Pentraxin 3 as a biomarker for acute coronary syndrome: comparison with biomarkers for cardiac damage. J Cardiol. 2011;58:38–45. https://doi.org/10.1016/j.jjcc.2011.03.006.

    Article  PubMed  Google Scholar 

  95. Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;14:6. https://doi.org/10.1186/1475-2891-14-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Villacorta H, Maisel AS. Soluble ST2 testing: a promising biomarker in the management of heart failure. Arq Bras Cardiol. 2016;106:145–52. https://doi.org/10.5935/abc.20150151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tamura Y, et al. Human pentraxin 3 (PTX3) as a novel biomarker for the diagnosis of pulmonary arterial hypertension. PLoS One. 2012;7:e45834. https://doi.org/10.1371/journal.pone.0045834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Heeschen C, et al. Soluble CD40 ligand in acute coronary syndromes. N Engl J Med. 2003;348:1104–11. https://doi.org/10.1056/NEJMoa022600.

    Article  CAS  PubMed  Google Scholar 

  99. Raber MN. In: Walker HK, Hall WD, Hurst JW, editors. Clinical methods: the history, physical, and laboratory examinations. Boston/London: Butterworths; 1990.

    Google Scholar 

  100. Watters K, Munro N, Feher M. QTc prolongation and diabetes therapies. Diabet Med. 2012;29:290–2. https://doi.org/10.1111/j.1464-5491.2011.03520.x.

    Article  CAS  PubMed  Google Scholar 

  101. Mizusawa Y, Wilde AA. Brugada syndrome. Circ Arrhythm Electrophysiol. 2012;5:606–16. https://doi.org/10.1161/CIRCEP.111.964577.

    Article  PubMed  Google Scholar 

  102. Vandenberk B, et al. Which QT correction formulae to use for QT monitoring? J Am Heart Assoc. 2016;5 https://doi.org/10.1161/JAHA.116.003264.

  103. Isbister GK, Page CB. Drug induced QT prolongation: the measurement and assessment of the QT interval in clinical practice. Br J Clin Pharmacol. 2013;76:48–57. https://doi.org/10.1111/bcp.12040.

    Article  PubMed  Google Scholar 

  104. Lorenz M, et al. Differential effects of glucagon-like peptide-1 receptor agonists on heart rate. Cardiovasc Diabetol. 2017;16:6. https://doi.org/10.1186/s12933-016-0490-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cooney MT, et al. Elevated resting heart rate is an independent risk factor for cardiovascular disease in healthy men and women. Am Heart J. 2010;159:612–619 e613. https://doi.org/10.1016/j.ahj.2009.12.029.

    Article  PubMed  Google Scholar 

  106. Bethel MA, et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol. 2018;6:105–13. https://doi.org/10.1016/S2213-8587(17)30412-6.

    Article  PubMed  Google Scholar 

  107. van den Meiracker AH. Ambulatory blood pressure monitoring in clinical trials with antihypertensive agents. Neth J Med. 1995;46:99–105.

    Article  Google Scholar 

  108. Li C, et al. Clinical validation of a new wrist continuous noninvasive hemodynamic monitoring system in comparison with invasive radial artery measurement. Blood Press Monit. 2017; https://doi.org/10.1097/MBP.0000000000000262.

  109. Zucatti ATN, et al. Low levels of usual physical activity are associated with higher 24 h blood pressure in type 2 diabetes mellitus in a cross-sectional study. J Diabetes Res. 2017;6232674:2017. https://doi.org/10.1155/2017/6232674.

    Article  Google Scholar 

  110. https://clinicaltrials.gov/ct2/show/NCT03054194?term=ABPM+holter&rank=1.

  111. Baker WL, et al. Effects of sodium-glucose cotransporter 2 inhibitors on 24-hour ambulatory blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2017;6 https://doi.org/10.1161/JAHA.117.005686.

  112. Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation. 2017;136:849–70. https://doi.org/10.1161/CIRCULATIONAHA.117.028136.

    Article  CAS  PubMed  Google Scholar 

  113. Eguchi K. Ambulatory blood pressure monitoring in diabetes and obesity-a review. Int J Hypertens. 2011;2011:954757. https://doi.org/10.4061/2011/954757.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Knudsen ST, et al. Pulse pressure and diurnal blood pressure variation: association with micro- and macrovascular complications in type 2 diabetes. Am J Hypertens. 2002;15:244–50.

    Article  Google Scholar 

  115. Knudsen ST, et al. Ambulatory pulse pressure, decreased nocturnal blood pressure reduction and progression of nephropathy in type 2 diabetic patients. Diabetologia. 2009;52:698–704. https://doi.org/10.1007/s00125-009-1262-6.

    Article  CAS  PubMed  Google Scholar 

  116. https://clinicaltrials.gov/ct2/show/NCT00050076.

  117. Hardman RL, Jazaeri O, Yi J, Smith M, Gupta R. Overview of classification systems in peripheral artery disease. Semin Interv Radiol. 2014;31:378–88. https://doi.org/10.1055/s-0034-1393976.

    Article  Google Scholar 

  118. Rutherford RB, et al. Recommended standards for reports dealing with lower extremity ischemia: revised version. J Vasc Surg. 1997;26:517–38.

    Article  CAS  Google Scholar 

  119. Rosenfield K, et al. Trial of a paclitaxel-coated balloon for femoropopliteal artery disease. N Engl J Med. 2015;373:145–53. https://doi.org/10.1056/NEJMoa1406235.

    Article  CAS  PubMed  Google Scholar 

  120. Ahlqvist E, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018; https://doi.org/10.1016/S2213-8587(18)30051-2.

  121. Koo BK, et al. Additive effects of PNPLA3 and TM6SF2 on the histological severity of non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2017; https://doi.org/10.1111/jgh.14056.

  122. Quail MA, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012;13:341. https://doi.org/10.1186/1471-2164-13-341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Schulte C, Zeller T. microRNA-based diagnostics and therapy in cardiovascular disease-Summing up the facts. Cardiovasc Diagn Ther. 2015;5:17–36. https://doi.org/10.3978/j.issn.2223-3652.2014.12.03.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Mitra S, et al. Analysis of the intestinal microbiota using SOLiD 16S rRNA gene sequencing and SOLiD shotgun sequencing. BMC Genomics. 2013;14(Suppl 5):S16. https://doi.org/10.1186/1471-2164-14-S5-S16.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Xu R, Tao A, Zhang S, Deng Y, Chen G. Association between patatin-like phospholipase domain containing 3 gene (PNPLA3) polymorphisms and nonalcoholic fatty liver disease: a HuGE review and meta-analysis. Sci Rep. 2015;5:9284. https://doi.org/10.1038/srep09284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhou K, Pedersen HK, Dawed AY, Pearson ER. Pharmacogenomics in diabetes mellitus: insights into drug action and drug discovery. Nat Rev Endocrinol. 2016;12:337–46. https://doi.org/10.1038/nrendo.2016.51.

    Article  CAS  PubMed  Google Scholar 

  127. Pollastro C, Ziviello C, Costa V, Ciccodicola A. Pharmacogenomics of drug response in type 2 diabetes: toward the definition of tailored therapies? PPAR Res. 2015;2015:415149. https://doi.org/10.1155/2015/415149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. He M, et al. Plasma microRNAs as potential noninvasive biomarkers for in-stent restenosis. PLoS One. 2014;9:e112043. https://doi.org/10.1371/journal.pone.0112043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ji R, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res. 2007;100:1579–88. https://doi.org/10.1161/CIRCRESAHA.106.141986.

    Article  CAS  PubMed  Google Scholar 

  130. Harris RA, Nishiyama SK, Wray DW, Richardson RS. Ultrasound assessment of flow-mediated dilation. Hypertension. 2010;55:1075–85. https://doi.org/10.1161/HYPERTENSIONAHA.110.150821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Moroni L, Selmi C, Angelini C, Meroni PL. Evaluation of endothelial function by flow-mediated dilation: a comprehensive review in rheumatic disease. Arch Immunol Ther Exp (Warsz.). 2017; https://doi.org/10.1007/s00005-017-0465-7.

  132. https://clinicaltrials.gov/ct2/show/NCT01609088?term=Flow+mediated+dilation&cond=Diabetes+Mellitus%2C+Type+2&draw=1&rank=3.

  133. Axtell AL, Gomari FA, Cooke JP. Assessing endothelial vasodilator function with the Endo-PAT 2000. J Vis Exp. 2010; https://doi.org/10.3791/2167.

  134. Kuvin JT, et al. Assessment of peripheral vascular endothelial function with finger arterial pulse wave amplitude. Am Heart J. 2003;146:168–74. https://doi.org/10.1016/S0002-8703(03)00094-2.

    Article  PubMed  Google Scholar 

  135. Cosenso-Martin LN, et al. Twelve-week randomized study to compare the effect of vildagliptin vs. glibenclamide both added-on to metformin on endothelium function in patients with type 2 diabetes and hypertension. Diabetol Metab Syndr. 2015;7:70. https://doi.org/10.1186/s13098-015-0062-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Laurent S, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605. https://doi.org/10.1093/eurheartj/ehl254.

    Article  PubMed  Google Scholar 

  137. Williams B, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113:1213–25. https://doi.org/10.1161/CIRCULATIONAHA.105.595496.

    Article  CAS  PubMed  Google Scholar 

  138. Covic A, Siriopol D. Pulse wave velocity ratio: the new “gold standard” for measuring arterial stiffness. Hypertension. 2015;65:289–90. https://doi.org/10.1161/HYPERTENSIONAHA.114.04678.

    Article  CAS  PubMed  Google Scholar 

  139. Calabia J, et al. Doppler ultrasound in the measurement of pulse wave velocity: agreement with the Complior method. Cardiovasc Ultrasound. 2011;9:13. https://doi.org/10.1186/1476-7120-9-13.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Khan TH, Farooqui FA, Niazi K. Critical review of the ankle brachial index. Curr Cardiol Rev. 2008;4:101–6. https://doi.org/10.2174/157340308784245810.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Wild SH, Byrne CD, Smith FB, Lee AJ, Fowkes FG. Low ankle-brachial pressure index predicts increased risk of cardiovascular disease independent of the metabolic syndrome and conventional cardiovascular risk factors in the Edinburgh artery study. Diabetes Care. 2006;29:637–42.

    Article  Google Scholar 

  142. American Diabetes A. Peripheral arterial disease in people with diabetes. Diabetes Care. 2003;26:3333–41.

    Article  Google Scholar 

  143. Crawford F, Welch K, Andras A, Chappell FM. Ankle brachial index for the diagnosis of lower limb peripheral arterial disease. Cochrane Database Syst Rev. 2016;9:CD010680. https://doi.org/10.1002/14651858.CD010680.pub2.

    Article  PubMed  Google Scholar 

  144. Gerhard-Herman MD, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;69:e71–e126. https://doi.org/10.1016/j.jacc.2016.11.007.

    Article  PubMed  Google Scholar 

  145. Rac-Albu M, Iliuta L, Guberna SM, Sinescu C. The role of ankle-brachial index for predicting peripheral arterial disease. Maedica (Buchar). 2014;9:295–302.

    Google Scholar 

  146. Lew E, Nicolosi N, Botek G. Lower extremity amputation risk factors associated with elevated ankle brachial indices and radiographic arterial calcification. J Foot Ankle Surg. 2015;54:473–7. https://doi.org/10.1053/j.jfas.2014.12.022.

    Article  PubMed  Google Scholar 

  147. McDermott MM, et al. Six-minute walk is a better outcome than treadmill walking tests in therapeutic trials of patients with peripheral artery disease. Circulation. 2014;130:61–8. https://doi.org/10.1161/CIRCULATIONAHA.114.007002.

  148. Nordanstig J, et al. Vascular quality of life Questionnaire-6 facilitates health-related quality of life assessment in peripheral arterial disease. J Vasc Surg. 2014;59:700–7. https://doi.org/10.1016/j.jvs.2013.08.099.

    Article  PubMed  Google Scholar 

  149. Morgan MB, Crayford T, Murrin B, Fraser SC. Developing the vascular quality of life questionnaire: a new disease-specific quality of life measurement for use in lower limb ischemia. J Vasc Surg. 2001;33:679–87. https://doi.org/10.1067/mva.2001.112326.

  150. Treat-Jacobson D, et al. The PADQOL: development and validation of a PAD-specific quality of life questionnaire. Vasc Med. 2012;17:405–15. https://doi.org/10.1177/1358863X12466708.

    Article  PubMed  Google Scholar 

  151. Singh JS, et al. Research into the effect of SGLT2 inhibition on left ventricular remodelling in patients with heart failure and diabetes mellitus (REFORM) trial rationale and design. Cardiovasc Diabetol. 2016;15:97. https://doi.org/10.1186/s12933-016-0419-0.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Hiatt WR, Rogers RK, Brass EP. The treadmill is a better functional test than the 6-minute walk test in therapeutic trials of patients with peripheral artery disease. Circulation. 2014;130:69–78. https://doi.org/10.1161/CIRCULATIONAHA.113.007003.

    Article  PubMed  Google Scholar 

  153. Labs KH, Nehler MR, Roessner M, Jaeger KA, Hiatt WR. Reliability of treadmill testing in peripheral arterial disease: a comparison of a constant load with a graded load treadmill protocol. Vasc Med. 1999;4:239–46. https://doi.org/10.1177/1358836X9900400406.

    Article  CAS  PubMed  Google Scholar 

  154. Beltz NM, et al. Graded exercise testing protocols for the determination of VO2max: historical perspectives, progress, and future considerations. J Sports Med (Hindawi Publ Corp). 2016;2016:3968393. https://doi.org/10.1155/2016/3968393.

    Article  Google Scholar 

  155. https://clinicaltrials.gov/ct2/show/NCT00368797?cond=peripheral+arterial+disease&phase=014&draw=6&rank=59.

  156. Nishio H, et al. Transcutaneous oxygen pressure as a surrogate index of lower limb amputation. Int Angiol. 2016;35:565–72.

    PubMed  Google Scholar 

  157. Moon H, Gelly H, Strauss MB, La SS, Miller SS. The validity of transcutaneous oxygen measurements in predicting healing of diabetic foot ulcers. Undersea Hyperb Med. 2016;43:641–8.

    PubMed  Google Scholar 

  158. Powell RJ, et al. Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation. 2008;118:58–65. https://doi.org/10.1161/CIRCULATIONAHA.107.727347.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Rodriguez-Araujo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodriguez-Araujo, G., Krentz, A.J. (2019). Utility of Invasive and Non-invasive Cardiovascular Research Methodologies in Drug Development for Diabetes, Obesity and NAFLD/NASH. In: Krentz, A., Weyer, C., Hompesch, M. (eds) Translational Research Methods in Diabetes, Obesity, and Nonalcoholic Fatty Liver Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-11748-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11748-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11747-4

  • Online ISBN: 978-3-030-11748-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics