Skip to main content
Log in

Cardiovascular Outcome Trials of Diabetes and Obesity Drugs: Implications for Conditional Approval and Early Phase Clinical Development

  • Review Article
  • Published:
Pharmaceutical Medicine Aims and scope Submit manuscript

A Publisher Correction to this article was published on 31 January 2018

This article has been updated

Abstract

Over the past decade, clinical development and regulatory review of investigational drugs for diabetes and obesity have been guided by heightened standards for pre- and post-marketing assessment of cardiovascular safety. In high-risk patients with type 2 diabetes, several large multicentre cardiovascular outcome trials (CVOTs) have confirmed non-inferiority, i.e. cardiovascular safety for several glucose-lowering agents. More recent diabetes CVOTs have demonstrated major cardiovascular benefits for drugs representing two newer classes, sodium–glucose cotransporter (SGLT)-2 inhibition and glucagon-like peptide (GLP)-1 receptor agonists. Collectively, hard endpoint data from diabetes CVOTs have ushered in a new era of type 2 diabetes drug development and clinical care. Moreover, some unexpected cardiovascular side-effects have been unearthed for certain drugs. With respect to the history of obesity pharmacotherapy, there have been several instances over the years in which weight-reducing medications were withdrawn from the market because of unacceptable cardiotoxicity, including aminorex, fenfluramine and dexfenfluramine, phenylpropanolamine, and sibutramine. Development programmes for novel anti-obesity drugs are also now required to provide evidence of cardiovascular safety. However, while weight reduction with more recently approved anti-obesity medications has been shown to improve multiple cardiometabolic risk factors, more definitive demonstration of cardiovascular risk/benefit through completion of CVOTs is still awaited. Thus, a marked disparity exists between the CVOT evidence bases for cardiovascular safety of newer glucose-lowering and weight-reducing medications. We believe that in this modern era of metabolic drug development cardiovascular effects of new drug candidates can and should be more rigorously assessed during the early phases of development, to inform go-/no-go decisions. Incorporating advanced imaging-, circulating-, and/or functional biomarkers into early phase development has the potential to identify early signals of cardiovascular risk or benefit, that may not be readily apparent through routine monitoring of traditional risk factors that have been relied upon to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 31 January 2018

    The original version of this article unfortunately contained a mistake. Table 1 was presented incorrectly. The corrected Table 1 is given below.

References

  1. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84.

    Article  PubMed  Google Scholar 

  2. Eckel RH, Kahn SE, Ferrannini E, et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? J Clin Endocrinol Metab. 2011;96(6):1654–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840–6.

    Article  CAS  PubMed  Google Scholar 

  4. Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444(7121):875–80.

    Article  PubMed  CAS  Google Scholar 

  5. Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical Update: Cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus—mechanisms, management, and clinical considerations. Circulation. 2016;133(24):2459–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rueda-Clausen CF, Ogunleye AA, Sharma AM. Health benefits of long-term weight-loss maintenance. Ann Rev Nutr Relat. 2015;35:475–516.

    Article  CAS  Google Scholar 

  7. Bray GA, Fruhbeck G, Ryan DH, Wilding JP. Management of obesity. Lancet. 2016;387(10031):1947–56.

    Article  PubMed  Google Scholar 

  8. Yanovski SZ, Yanovski JA. Long-term drug treatment for obesity: a systematic and clinical review. JAMA. 2014;311(1):74–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim GW, Lin JE, Blomain ES, Waldman SA. Antiobesity pharmacotherapy: new drugs and emerging targets. Clin Pharmacol Ther. 2014;95(1):53–66.

    Article  CAS  PubMed  Google Scholar 

  10. Han TS, Lean ME. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovasc Dis. 2016;5:2048004016633371.

    PubMed  PubMed Central  Google Scholar 

  11. Thomas CE, Mauer EA, Shukla AP, Rathi S, Aronne LJ. Low adoption of weight loss medications: a comparison of prescribing patterns of antiobesity pharmacotherapies and SGLT2s. Obesity (Silver Spring). 2016;24(9):1955–61.

    Article  Google Scholar 

  12. Krentz AJ, Hompesch M. Targeting hyperglycaemia with anti-obesity drugs: time for a paradigm shift? Drugs. 2013;73(15):1649–51.

    Article  PubMed  Google Scholar 

  13. Hollander P, Bays HE, Rosenstock J, et al. Coadministration of canagliflozin and phentermine for weight management in overweight and obese individuals without diabetes: a randomized clinical trial. Diabetes Care. 2017;40(5):632–9.

    Article  PubMed  Google Scholar 

  14. Magkos F, Nikonova E, Fain R, Zhou S, Ma T, Shanahan W. Effect of lorcaserin on glycemic parameters in patients with type 2 diabetes mellitus. Obesity (Silver Spring). 2017;25:842–9.

    Article  CAS  Google Scholar 

  15. Sweeting AN, Tabet E, Caterson ID, Markovic TP. Management of obesity and cardiometabolic risk–role of phentermine/extended release topiramate. Diabetes Metab Syndr Obes. 2014;7:35–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Scheen AJ, Van Gaal LF. Combating the dual burden: therapeutic targeting of common pathways in obesity and type 2 diabetes. Lancet Diabetes Endocrinol. 2014;2(11):911–22.

    Article  CAS  PubMed  Google Scholar 

  17. Skow MA, Bergmann NC, Knop FK. Diabetes and obesity treatment based on dual incretin receptor activation: ‘twincretins’. Diabetes Obes Metab. 2016;18(9):847–54.

    Article  CAS  PubMed  Google Scholar 

  18. Jindal A, Whaley-Connell A, Brietzke S, Sowers JR. Therapy of obese patients with cardiovascular disease. Curr Opin Pharmacol. 2013;13(2):200–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Misra VL, Khashab M, Chalasani N. Nonalcoholic fatty liver disease and cardiovascular risk. Curr Gastroenterol Rep. 2009;11(1):50–5.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Krentz AJ, Hompesch M. Cardiovascular safety of new drugs for diabetes: getting the balance right? Pharm Med. 2014;28:109–17.

    Article  CAS  Google Scholar 

  21. Krentz AJ, Fujioka K, Hompesch M. Evolution of pharmacological obesity treatments: focus on adverse side-effect profiles. Diabetes Obes Metab. 2016;18(6):558–70.

    Article  CAS  PubMed  Google Scholar 

  22. Holman RR, Sourij H, Califf RM. Cardiovascular outcome trials of glucose-lowering drugs or strategies in type 2 diabetes. Lancet. 2014;383(9933):2008–17.

    Article  CAS  PubMed  Google Scholar 

  23. Meigs JB. Epidemiology of cardiovascular complications in type 2 diabetes mellitus. Acta Diabetol. 2003;40(Suppl 2):S358–61.

    Article  PubMed  Google Scholar 

  24. Sattar N. Revisiting the links between glycaemia, diabetes and cardiovascular disease. Diabetologia. 2013;56(4):686–95.

    Article  CAS  PubMed  Google Scholar 

  25. Krentz AJ. Sulfonylureas in the prevention of vascular complications: from UKPDS to the ADVANCE study. In: Crepaldi GT, Avogaro A, editors. The metabolic syndrome: diabetes, obesity, hyperlipidemia and hypertension. Amsterdam: Excertpa Medical International Conference Series; 2002. p. 261–77.

    Google Scholar 

  26. Schnell O, Ryden L, Standl E, Ceriello A, Group CES. Current perspectives on cardiovascular outcome trials in diabetes. Cardiovasc Diabetol. 2016;15(1):139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Simpson SH, Lee J, Choi S, Vandermeer B, Abdelmoneim AS, Featherstone TR. Mortality risk among sulfonylureas: a systematic review and network meta-analysis. Lancet Diabetes Endocrinol. 2015;3(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  28. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854–65.

    Article  Google Scholar 

  29. Griffin SJ, Leaver JK, Irving GJ. Impact of metformin on cardiovascular disease: a meta-analysis of randomised trials among people with type 2 diabetes. Diabetologia. 2017;60:1620–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guidance for industry. Diabetes mellitus—evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM071627.pdfeutm_term=guidance. Accessed 31 Mar 2017.

  31. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71.

    Article  CAS  PubMed  Google Scholar 

  32. Raji A, Seely EW, Bekins SA, Williams GH, Simonson DC. Rosiglitazone improves insulin sensitivity and lowers blood pressure in hypertensive patients. Diabetes Care. 2003;26(1):172–8.

    Article  CAS  PubMed  Google Scholar 

  33. Sidhu JS, Kaposzta Z, Markus HS, Kaski JC. Effect of rosiglitazone on common carotid intima-media thickness progression in coronary artery disease patients without diabetes mellitus. Arterioscler Thromb Vasc Biol. 2004;24(5):930–4.

    Article  CAS  PubMed  Google Scholar 

  34. Krentz AJ. Rosiglitazone: trials, tribulations and termination. Drugs. 2011;71(2):123–30.

    Article  CAS  PubMed  Google Scholar 

  35. Consoli A, Formoso G. Do thiazolidinediones still have a role in treatment of type 2 diabetes mellitus? Diabetes Obes Metab. 2013;15(11):967–77.

    Article  CAS  PubMed  Google Scholar 

  36. Woodcock J, Sharfstein JM, Hamburg M. Regulatory action on rosiglitazone by the U.S. Food and Drug Administration. N Engl J Med. 2012;363(16):1489–91.

    Article  Google Scholar 

  37. Krentz AJ, Bailey CJ, Melander A. Thiazolidinediones for type 2 diabetes. New agents reduce insulin resistance but need long term clinical trials. BMJ. 2000;321(7256):252–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Seltzer HS. A summary of criticisms of the findings and conclusions of the University Group Diabetes Program (UGDP). Diabetes. 1972;21(9):976–9.

    Article  CAS  PubMed  Google Scholar 

  39. Kilo C, Miller JP, Williamson JR. The crux of the UGDP. Spurious results and biologically inappropriate data analysis. Diabetologia. 1980;18(3):179–85.

    Article  CAS  PubMed  Google Scholar 

  40. Williams RH, Palmer JP. Farewell to phenformin for treating diabetes mellitus. Ann Intern Med. 1975;83(4):567–8.

    Article  CAS  PubMed  Google Scholar 

  41. Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs. 2005;65(3):385–411.

    Article  CAS  PubMed  Google Scholar 

  42. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.

    Article  CAS  PubMed  Google Scholar 

  43. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    Article  CAS  PubMed  Google Scholar 

  44. Igel LI, Sinha A, Saunders KH, Apovian CM, Vojta D, Aronne LJ. Metformin: an old therapy that deserves a new indication for the treatment of obesity. Curr Atheroscler Rep. 2016;18(4):16.

    Article  CAS  PubMed  Google Scholar 

  45. Inzucchi SE, Zinman B, Wanner C, et al. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diabetes Vasc Dis Res. 2015;12(2):90–100.

    Article  CAS  Google Scholar 

  46. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003;290(4):486–94.

    Article  CAS  PubMed  Google Scholar 

  47. Hanefeld M, Schaper F. Acarbose: oral anti-diabetes drug with additional cardiovascular benefits. Expert Rev Cardiovasc Ther. 2008;6(2):153–63.

    Article  PubMed  Google Scholar 

  48. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89.

    Article  CAS  PubMed  Google Scholar 

  49. Scheen AJ. Outcomes and lessons from the PROactive study. Diabetes Res Clin Pract. 2012;98(2):175–86.

    Article  CAS  PubMed  Google Scholar 

  50. McCarthy M. US regulators relax restrictions on rosiglitazone. BMJ. 2013;347:f7144.

    Article  PubMed  Google Scholar 

  51. Wilding JP. PPAR agonists for the treatment of cardiovascular disease in patients with diabetes. Diabetes Obes Metab. 2012;14(11):973–82.

    Article  CAS  PubMed  Google Scholar 

  52. Stout RW. The impact of insulin upon atherosclerosis. Horm Metab Res. 1994;26(3):125–8.

    Article  CAS  PubMed  Google Scholar 

  53. Muis MJ, Bots ML, Grobbee DE, Stolk RP. Insulin treatment and cardiovascular disease; friend or foe? A point of view. Diabetes Med. 2005;22(2):118–26.

    Article  CAS  Google Scholar 

  54. Siraj ES, Rubin DJ, Riddle MC, et al. Insulin dose and cardiovascular mortality in the ACCORD trial. Diabetes Care. 2015;38(11):2000–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Investigators OT, Gerstein HC, Bosch J, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367(4):319–28.

    Article  CAS  Google Scholar 

  56. Hanefeld M, Bramlage P. Insulin use early in the course of type 2 diabetes mellitus: the ORIGIN trial. Curr Diabetes Rep. 2013;13(3):342–9.

    Article  CAS  Google Scholar 

  57. Marso SP, McGuire DK, Zinman B, et al. Design of DEVOTE (trial comparing cardiovascular safety of insulin degludec vs insulin glargine in patients with type 2 diabetes at high risk of cardiovascular events)—DEVOTE 1. Am Heart J. 2016;179:175–83.

    Article  CAS  PubMed  Google Scholar 

  58. Mannucci E, Giannini S, Dicembrini I. Cardiovascular effects of basal insulins. Drug Healthc Patient Saf. 2015;7:113–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Adler AI. Drugs and diabetes: understanding the new breed of cardiovascular safety trials. Lancet Diabetes Endocrinol. 2013;1:175–7.

    Article  PubMed  Google Scholar 

  60. Chow E, Bernjak A, Williams S, et al. Risk of cardiac arrhythmias during hypoglycemia in patients with type 2 diabetes and cardiovascular risk. Diabetes. 2014;63(5):1738–47.

    Article  CAS  PubMed  Google Scholar 

  61. Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6):580–91.

    Article  CAS  PubMed  Google Scholar 

  62. Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm—2017 executive summary. Endocr Pract. 2017;23(2):207–38.

    Article  PubMed  Google Scholar 

  63. Hirshberg B, Raz I. Impact of the U.S. Food and Drug Administration cardiovascular assessment requirements on the development of novel antidiabetes drugs. Diabetes Care. 2011;34(Suppl 2):S101–6.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hirschberg B, Katz A. Cardiovascular outcome studies with novel antidiabetes agents: scientific and operational considerations. Diabetes Care. 2013;36(suppl 2):S253–8.

    Article  CAS  Google Scholar 

  65. Fadini GP, Avogaro A, Degli Esposti L, et al. Risk of hospitalization for heart failure in patients with type 2 diabetes newly treated with DPP-4 inhibitors or other oral glucose-lowering medications: a retrospective registry study on 127,555 patients from the Nationwide OsMed Health-DB Database. Eur Heart J. 2015;36(36):2454–62.

    Article  CAS  PubMed  Google Scholar 

  66. Li L, Li S, Deng K, et al. Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: systematic review and meta-analysis of randomised and observational studies. BMJ. 2016;352:i610.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Bonora E, Cigolini M. DPP-4 inhibitors and cardiovascular disease in type 2 diabetes mellitus. Expectations, observations and perspectives. Nutr Metab Cardiovasc Dis. 2016;26(4):273–84.

    Article  CAS  PubMed  Google Scholar 

  68. Schnell O, Standl E, Catrinoiu D, et al. Report from the 1st Cardiovascular Outcome Trial (CVOT) summit of the diabetes & cardiovascular disease (D&CVD) EASD Study Group. Cardiovasc Diabetol. 2016;15:33.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Smith RJ, Goldfine AB, Hiatt WR. Evaluating the cardiovascular safety of new medications for type 2 diabetes: time to reassess? Diabetes Care. 2016;39(5):738–42.

    Article  PubMed  Google Scholar 

  70. Tahrani AA, Barnett AH, Bailey CJ. Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat Rev Endocrinol. 2016;12:566–92.

    Article  CAS  PubMed  Google Scholar 

  71. Krentz AJ. Management of type 2 diabetes in the obese patient: current concerns and emerging therapies. Curr Med Res Opin. 2008;24(2):401–17.

    Article  CAS  PubMed  Google Scholar 

  72. Avogaro A, Fadini GP, Sesti G, Bonora E, Del Prato S. Continued efforts to translate diabetes cardiovascular outcome trials into clinical practice. Cardiovasc Diabetol. 2016;15(1):111.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fitchett DH, Udell JA, Inzucchi SE. Heart failure outcomes in clinical trials of glucose-lowering agents in patients with diabetes. Eur J Heart Fail. 2017;19(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  74. Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–26.

    Article  CAS  PubMed  Google Scholar 

  75. Scirica BM, Braunwald E, Raz I, et al. Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation. 2014;130(18):1579–88.

    Article  CAS  PubMed  Google Scholar 

  76. White WB, Cannon CP, Heller SR, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369(14):1327–35.

    Article  CAS  PubMed  Google Scholar 

  77. Green JB, Bethel MA, Armstrong PW, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373(3):232–42.

    Article  CAS  PubMed  Google Scholar 

  78. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.

    Article  CAS  PubMed  Google Scholar 

  79. Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–34.

    Article  CAS  PubMed  Google Scholar 

  80. Sattar N, McLaren J, Kristensen SL, Preiss D, McMurray JJ. SGLT2 Inhibition and cardiovascular events: why did EMPA-REG outcomes surprise and what were the likely mechanisms? Diabetologia. 2016;59(7):1333–9.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Krentz AJ. Cardiovascular outcome trials of glucose-lowering drugs come of age. Cardiovasc Endocrinol. 2015;4:115–6.

    Article  Google Scholar 

  82. Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia. 2017;60(2):215–25.

    Article  CAS  PubMed  Google Scholar 

  83. DeFronzo RA. The EMPA-REG study: what has it told us? A diabetologist’s perspective. J Diabetes Complic. 2016;30(1):1–2.

    Article  Google Scholar 

  84. DeFronzo RA, Norton L, Abdul-Ghani M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol. 2017;13(1):11–26.

    Article  CAS  PubMed  Google Scholar 

  85. Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care. 2016;39(7):1115–22.

    Article  CAS  PubMed  Google Scholar 

  86. Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care. 2016;39(7):1108–14.

    Article  PubMed  Google Scholar 

  87. Marx N, McGuire DK. Sodium-glucose cotransporter-2 inhibition for the reduction of cardiovascular events in high-risk patients with diabetes mellitus. Eur Heart J. 2016;37(42):3192–200.

    Article  PubMed  Google Scholar 

  88. Martens P, Mathieu C, Verbrugge FH. Promise of SGLT2 inhibitors in heart failure: diabetes and beyond. Curr Treat Options Cardiovasc Med. 2017;19(3):23.

    Article  PubMed  Google Scholar 

  89. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.

    Article  CAS  PubMed  Google Scholar 

  90. FDA Drug Safety Communication: FDA confirms increased risk of leg and foot amputations with the diabetes medicine canagliflozin (Invokana I, Invokamet XR). https://www.fda.gov/Drugs/DrugSafety/ucm557507.htm. Accessed 28 June 2017.

  91. Sha S, Polidori D, Heise T, et al. Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2014;16(11):1087–95.

    Article  CAS  PubMed  Google Scholar 

  92. Kosiborod M, Cavender, M., Norhammar, A. Lower rates of hospitalization for heart failure and all-cause death in new users of SGLT2 inhibitors: the CVD-REAL study. Presented at the 66th scientific session of the American College of Cardiology, Washington, DC, 17–19 March 2017. Abstract 415-14; 2017.

  93. Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247–57.

    Article  CAS  PubMed  Google Scholar 

  94. Marx N, McGuire DK, Perkovic V, et al. Composite primary end points in cardiovascular outcomes trials involving type 2 diabetes patients: should unstable angina be included in the primary end point? Diabetes Care. 2017;40(9):1144–51.

    Article  PubMed  Google Scholar 

  95. Sivertsen J, Rosenmeier J, Holst JJ, Vilsboll T. The effect of glucagon-like peptide 1 on cardiovascular risk. Nat Rev Cardiol. 2012;9(4):209–22.

    Article  CAS  PubMed  Google Scholar 

  96. Okerson T, Chilton RJ. The cardiovascular effects of GLP-1 receptor agonists. Cardiovasc Ther. 2012;30(3):e146–55.

    Article  CAS  PubMed  Google Scholar 

  97. Kang YM, Jung CH. Cardiovascular effects of glucagon-like peptide-1 receptor agonists. Endocrinol Metab (Seoul). 2016;31(2):258–74.

    Article  CAS  Google Scholar 

  98. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Uccellatore A, Genovese S, Dicembrini I, Mannucci E, Ceriello A. Comparison review of short-acting and long-acting glucagon-like peptide-1 receptor agonists. Diabetes Ther. 2015;6(3):239–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cooney MT, Vartiainen E, Laatikainen T, Juolevi A, Dudina A, Graham IM. Elevated resting heart rate is an independent risk factor for cardiovascular disease in healthy men and women. Am Heart J. 2010;159(4):612-9e3.

    Article  Google Scholar 

  101. https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM563335.pdf. Accessed 1 July 2017.

  102. Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44.

    Article  CAS  PubMed  Google Scholar 

  103. Holman RR, Bethel MA, George J, et al. Rationale and design of the EXenatide Study of Cardiovascular Event Lowering (EXSCEL) trial. Am Heart J. 2016;174:103–10.

    Article  PubMed  Google Scholar 

  104. Holman RR, Bethel MA, Mentz RJ, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39.

    Article  CAS  PubMed  Google Scholar 

  105. Intarcia. https://www.intarcia.com/media/press-releases/2016-may-6-cardiovascular-safety.html. Accessed 9 June 2017.

  106. https://www.intarcia.com/media/press-releases/2017-sep-27-intarcia-provides-corporate-update.html. Accessed 28 Sept 2017.

  107. Colman E, Golden J, Roberts M, Egan A, Weaver J, Rosebraugh C. The FDA’s assessment of two drugs for chronic weight management. N Engl J Med. 2012;367(17):1577–9.

    Article  CAS  PubMed  Google Scholar 

  108. Lean ME. Sibutramine—a review of clinical efficacy. Int J Obes Relat Metab Disord. 1997;21(Suppl 1):S306-6 (discussion 7–9).

    Google Scholar 

  109. Nisoli E, Carruba MO. An assessment of the safety and efficacy of sibutramine, an anti-obesity drug with a novel mechanism of action. Obes Rev. 2000;1(2):127–39.

    Article  CAS  PubMed  Google Scholar 

  110. Poston WS, Foreyt JP. Sibutramine and the management of obesity. Expert Opin Pharmacother. 2004;5(3):633–42.

    Article  CAS  PubMed  Google Scholar 

  111. Torp-Pedersen C, Caterson I, Coutinho W, et al. Cardiovascular responses to weight management and sibutramine in high-risk subjects: an analysis from the SCOUT trial. Eur Heart J. 2007;28(23):2915–23.

    Article  PubMed  Google Scholar 

  112. Scheen AJ. Cardiovascular risk-benefit profile of sibutramine. Am J Cardiovasc Drugs. 2010;10(5):321–34.

    Article  CAS  PubMed  Google Scholar 

  113. James WP, Caterson ID, Coutinho W, et al. Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects. N Engl J Med. 2010;363(10):905–17.

    Article  CAS  PubMed  Google Scholar 

  114. Astrup A. Drug management of obesity—efficacy versus safety. N Engl J Med. 2010;363(3):288–90.

    Article  CAS  PubMed  Google Scholar 

  115. Downey M, Still C, Sharma AM. Is there a path for approval of an antiobesity drug: what did the Sibutramine Cardiovascular Outcomes trial find? Curr Opin Endocrinol Diabetes Obes. 2011;18(5):321–7.

    Article  CAS  PubMed  Google Scholar 

  116. VIVUS. QSYMIA (phentermine and topiramate extended-release). 2013. http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/022580s004lbl.pdf. Accessed 5 Apr 2017.

  117. Caterson ID, Finer N, Coutinho W, et al. Maintained intentional weight loss reduces cardiovascular outcomes: results from the Sibutramine Cardiovascular OUTcomes (SCOUT) trial. Diabetes Obes Metab. 2012;14(6):523–30.

    Article  CAS  PubMed  Google Scholar 

  118. Food and Drug Administration. Guidance for industry developing products for weight management. 2007. http://www.fda.gov/downloads/Drugs/Guidances/ucm071612.pdf. Accessed 3 May 2017.

  119. Colman E. Food and drug administration’s obesity drug guidance document: a short history. Circulation. 2012;125(17):2156–64.

    Article  PubMed  Google Scholar 

  120. Manning S, Pucci A, Finer N. Pharmacotherapy for obesity: novel agents and paradigms. Ther Adv Chronic Dis. 2014;5(3):135–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wharton S, Serodio KJ. Next generation of weight management medications: implications for diabetes and CVD risk. Curr Cardiol Rep. 2015;17(5):35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rueda-Clausen CF, Padwal RS, Sharma AM. New pharmacological approaches for obesity management. Nat Rev Endocrinol. 2013;9(8):467–78.

    Article  CAS  PubMed  Google Scholar 

  123. Cunningham JW, Wiviott SD. Modern obesity pharmacotherapy: weighing cardiovascular risk and benefit. Clin Cardiol. 2014;37(11):693–9.

    Article  PubMed  Google Scholar 

  124. Smith SR, Weissman NJ, Anderson CM, et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N Engl J Med. 2010;363(3):245–56.

    Article  CAS  PubMed  Google Scholar 

  125. Fidler MC, Sanchez M, Raether B, et al. A one-year randomized trial of lorcaserin for weight loss in obese and overweight adults: the BLOSSOM trial. J Clin Endocrinol Metab. 2011;96(10):3067–77.

    Article  CAS  PubMed  Google Scholar 

  126. O’Neil PM, Smith SR, Weissman NJ, et al. Randomized placebo-controlled clinical trial of lorcaserin for weight loss in type 2 diabetes mellitus: the BLOOM-DM study. Obesity (Silver Spring). 2012;20(7):1426–36.

    Article  CAS  Google Scholar 

  127. Rothman RB, Baumann MH. Serotonergic drugs and valvular heart disease. Expert Opin Drug Saf. 2009;8(3):317–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hess R, Cross LB. The safety and efficacy of lorcaserin in the management of obesity. Postgrad Med. 2013;125(6):62–72.

    Article  PubMed  Google Scholar 

  129. Aronne L, Shanahan W, Fain R, et al. Safety and efficacy of lorcaserin: a combined analysis of the BLOOM and BLOSSOM trials. Postgrad Med. 2014;126(6):7–18.

    Article  PubMed  Google Scholar 

  130. Allison DB, Gadde KM, Garvey WT, et al. Controlled-release phentermine/topiramate in severely obese adults: a randomized controlled trial (EQUIP). Obesity (Silver Spring). 2012;20(2):330–42.

    Article  CAS  Google Scholar 

  131. Gadde KM, Allison DB, Ryan DH, et al. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377(9774):1341–52.

    Article  CAS  PubMed  Google Scholar 

  132. Garvey WT, Ryan DH, Look M, et al. Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): a randomized, placebo-controlled, phase 3 extension study. Am J Clin Nutr. 2012;95(2):297–308.

    Article  CAS  PubMed  Google Scholar 

  133. Davidson MH, Tonstad S, Oparil S, Schwiers M, Day WW, Bowden CH. Changes in cardiovascular risk associated with phentermine and topiramate extended-release in participants with comorbidities and a body mass index >/= 27 kg/m(2). Am J Cardiol. 2013;111(8):1131–8.

    Article  CAS  PubMed  Google Scholar 

  134. Shin JH, Gadde KM. Clinical utility of phentermine/topiramate (Qsymia) combination for the treatment of obesity. Diabetes Metab Syndr Obes. 2013;6:131–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Haslam D. Weight management in obesity—past and present. Int J Clin Pract. 2017;70:206–17.

    Article  Google Scholar 

  136. Smith SR, Fujioka K, Gupta AK, et al. Combination therapy with naltrexone and bupropion for obesity reduces total and visceral adiposity. Diabetes Obes Metab. 2013;15(9):863–6.

    Article  CAS  PubMed  Google Scholar 

  137. Greenway FL, Fujioka K, Plodkowski RA, et al. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2010;376(9741):595–605.

    Article  CAS  PubMed  Google Scholar 

  138. Hollander P, Gupta AK, Plodkowski R, et al. Effects of naltrexone sustained-release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes. Diabetes Care. 2013;36(12):4022–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kim GW, Lin JE, Valentino MA, Colon-Gonzalez F, Waldman SA. Regulation of appetite to treat obesity. Expert Rev Clin Pharmacol. 2011;4(2):243–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Takeda. Cardiovascular outcomes study of naltrexone SR/bupropion SR in overweight and obese subjects with cardiovascular risk factors (the Light study). 2014. http://clinicaltrials.gov/ct2/show/NCT01601704?term=Contrave+in+the+Light+Study&rank=1. Accessed 7 July 2017.

  141. Nissen SE, Wolski KE, Prcela L, et al. Effect of naltrexone-bupropion on major adverse cardiovascular events in overweight and obese patients with cardiovascular risk factors: a randomized clinical trial. JAMA. 2016;315(10):990–1004.

    Article  CAS  PubMed  Google Scholar 

  142. http://www.accessdata.fda.gov/drugsatfda_docs/appletter/2014/200063Orig1s000ltr.pdf. Accessed 10 June 2017.

  143. Wadden TA, Hollander P, Klein S, et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE maintenance randomized study. Int J Obes (Lond). 2013;37(11):1443–51.

    Article  CAS  Google Scholar 

  144. Fujioka K. Current and emerging medications for overweight or obesity in people with comorbidities. Diabetes Obes Metab. 2015;17(11):1021–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kuhnen P, Clement K, Wiegand S, et al. Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist. N Engl J Med. 2016;375(3):240–6.

    Article  PubMed  CAS  Google Scholar 

  146. Greenfield JR, Miller JW, Keogh JM, et al. Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med. 2009;360(1):44–52.

    Article  CAS  PubMed  Google Scholar 

  147. Bello NT, Zahner MR. Tesofensine, a monoamine reuptake inhibitor for the treatment of obesity. Curr Opin Investig Drugs. 2009;10(10):1105–16.

    CAS  PubMed  Google Scholar 

  148. Tomlinson B, Hu M, Zhang Y, Chan P, Liu ZM. Investigational glucagon-like peptide-1 agonists for the treatment of obesity. Expert Opin Investig Drugs. 2016;25(10):1167–79.

    Article  CAS  PubMed  Google Scholar 

  149. Januzzi JL Jr, Butler J, Jarolim P, et al. Effects of canagliflozin on cardiovascular biomarkers in older adults with type 2 diabetes. J Am Coll Cardiol. 2017;70(6):704–12.

    Article  CAS  PubMed  Google Scholar 

  150. Tiwari G, Tiwari R, Sriwastawa B, et al. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2(1):2–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Fan S, Geng Q, Pan Z, et al. Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012;6:152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mondal D, Pradhan L, Ali M, Agrawal KC. HAART drugs induce oxidative stress in human endothelial cells and increase endothelial recruitment of mononuclear cells: exacerbation by inflammatory cytokines and amelioration by antioxidants. Cardiovasc Toxicol. 2004;4(3):287–302.

    Article  CAS  PubMed  Google Scholar 

  153. Banerjee D, Rodriguez M, Nag M, Adamson JW. Exposure of endothelial cells to recombinant human erythropoietin induces nitric oxide synthase activity. Kidney Int. 2000;57(5):1895–904.

    Article  CAS  PubMed  Google Scholar 

  154. Yoshino S, Cassar A, Matsuo Y, et al. Fractional flow reserve with dobutamine challenge and coronary microvascular endothelial dysfunction in symptomatic myocardial bridging. Circ J. 2014;78(3):685–92.

    Article  CAS  PubMed  Google Scholar 

  155. Diez-Delhoyo F, Gutierrez-Ibanes E, Loughlin G, et al. Coronary physiology assessment in the catheterization laboratory. World J Cardiol. 2015;7(9):525–38.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Moroni L, Selmi C, Angelini C, Meroni PL. Evaluation of endothelial function by flow-mediated dilation: a comprehensive review in rheumatic disease. Arch Immunol Ther Exp (Warsz). 2017. doi:10.1007/s00005-017-0465-7. [Epub ahead of print].

    Google Scholar 

  157. Tomiyama H, Kohro T, Higashi Y, et al. A multicenter study design to assess the clinical usefulness of semi-automatic measurement of flow-mediated vasodilatation of the brachial artery. Int Heart J. 2012;53(3):170–5.

    Article  PubMed  Google Scholar 

  158. Muniyappa R, Sowers JR. Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord. 2013;14(1):5–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang S, Zhang M, Liang B, et al. AMPKalpha2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes. Circ Res. 2010;106(6):1117–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Covic A, Siriopol D. Pulse wave velocity ratio: the new “gold standard” for measuring arterial stiffness. Hypertension. 2015;65(2):289–90.

    Article  CAS  PubMed  Google Scholar 

  161. Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol. 2012;10(1):4–18.

    Article  CAS  PubMed  Google Scholar 

  162. Ferrari R. RAAS inhibition and mortality in hypertension. Glob Cardiol Sci Pract. 2013;2013(3):269–78.

    PubMed  PubMed Central  Google Scholar 

  163. Sorriento D, Trimarco B, Iaccarino G. Adrenergic mechanism in the control of endothelial function. Transl Med UniSa. 2011;1:213–28.

    PubMed  PubMed Central  Google Scholar 

  164. Madin K, Iqbal P. Twenty four hour ambulatory blood pressure monitoring: a new tool for determining cardiovascular prognosis. Postgrad Med J. 2006;82(971):548–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Abraham WT, Adamson PB, Bourge RC, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377(9766):658–66.

    Article  PubMed  Google Scholar 

  166. Ramot Y, Nyska A. Drug-induced thrombosis—experimental, clinical, and mechanistic considerations. Toxicol Pathol. 2007;35(2):208–25.

    Article  CAS  PubMed  Google Scholar 

  167. Kohler HP. Insulin resistance syndrome: interaction with coagulation and fibrinolysis. Swiss Med Wkly. 2002;132(19–20):241–52.

    PubMed  Google Scholar 

  168. Adams RL, Bird RJ. Review article: Coagulation cascade and therapeutics update: relevance to nephrology. Part 1: Overview of coagulation, thrombophilias and history of anticoagulants. Nephrology (Carlton). 2009;14(5):462–70.

    Article  CAS  Google Scholar 

  169. Itoh N, Ohta H. Pathophysiological roles of FGF signaling in the heart. Front Physiol. 2013;4:247.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Mozos I, Luca CT. Crosstalk between oxidative and nitrosative stress and arterial stiffness. Curr Vasc Pharmacol. 2017;15:446–56.

    Article  CAS  PubMed  Google Scholar 

  171. Quintero M, Colombo SL, Godfrey A, Moncada S. Mitochondria as signaling organelles in the vascular endothelium. Proc Natl Acad Sci USA. 2006;103(14):5379–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nicholls SJ, Sipahi I, Schoenhagen P, Crowe T, Tuzcu EM, Nissen SE. Application of intravascular ultrasound in anti-atherosclerotic drug development. Nat Rev Drug Discov. 2006;5(6):485–92.

    Article  CAS  PubMed  Google Scholar 

  173. Allemang MT, Lakin RO, Kanaya T, Eslahpazir BA, Bezerra HG, Kashyap VS. The use of dextran and carbon dioxide for optical coherence tomography in the superficial femoral artery. J Vasc Surg. 2014;59(1):238–40.

    Article  PubMed  Google Scholar 

  174. Aboyans V, Criqui MH, Abraham P, et al. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation. 2012;126(24):2890–909.

    Article  PubMed  Google Scholar 

  175. Glover GH. Overview of functional magnetic resonance imaging. Neurosurg Clin N Am. 2011;22(2):133–9 (vii).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Sengelov M, Jorgensen PG, Jensen JS, et al. Global longitudinal strain is a superior predictor of all-cause mortality in heart failure with reduced ejection fraction. JACC Cardiovasc Imaging. 2015;8(12):1351–9.

    Article  PubMed  Google Scholar 

  177. Murthy VL, Naya M, Foster CR, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124(20):2215–24.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Grassi I, Nanni C, Allegri V, et al. The clinical use of PET with (11)C-acetate. Am J Nucl Med Mol Imaging. 2012;2(1):33–47.

    CAS  PubMed  Google Scholar 

  179. Bouteldja N, Andersen LT, Moller N, Gormsen LC. Using positron emission tomography to study human ketone body metabolism: a review. Metabolism. 2014;63(11):1375–84.

    Article  CAS  PubMed  Google Scholar 

  180. Morrow L, Krentz AJ. Early phase metabolic research with reference to special populations. In: Krentz AJHL, Hompesch M, editors. Translational research methods for diabetes, obesity and cardiometabolic drug development. New York: Springer; 2015. p. 225–42.

    Google Scholar 

  181. Voudris KV, Chanin J, Feldman DN, Charitakis K. Novel inflammatory biomarkers in coronary artery disease: potential therapeutic approaches. Curr Med Chem. 2015;22(22):2680–9.

    Article  CAS  PubMed  Google Scholar 

  182. Wang J, Tan GJ, Han LN, Bai YY, He M, Liu HB. Novel biomarkers for cardiovascular risk prediction. J Geriatr Cardiol. 2017;14(2):135–50.

    PubMed  PubMed Central  Google Scholar 

  183. Lacey B, Herrington WG, Preiss D, Lewington S, Armitage J. The role of emerging risk factors in cardiovascular outcomes. Curr Atheroscler Rep. 2017;19(6):28.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Saeed A, Ballantyne CM. Assessing cardiovascular risk and testing in type 2 diabetes. Curr Cardiol Rep. 2017;19(3):19.

    Article  PubMed  Google Scholar 

  185. Sager PT, Seltzer J, Turner JR, et al. Cardiovascular safety outcome trials: a meeting report from the cardiac safety research consortium. Am Heart J. 2015;169(4):486–95.

    Article  PubMed  Google Scholar 

  186. Vogenberg FR, Isaacson Barash C, Pursel M. Personalized medicine: part 1: evolution and development into theranostics. P T. 2010;35(10):560–76.

    PubMed  PubMed Central  Google Scholar 

  187. Pinto N, Dolan ME. Clinically relevant genetic variations in drug metabolizing enzymes. Curr Drug Metab. 2011;12(5):487–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Aguiar M, Masse R, Gibbs BF. Regulation of cytochrome P450 by posttranslational modification. Drug Metab Rev. 2005;37(2):379–404.

    Article  CAS  PubMed  Google Scholar 

  189. Preissner SC, Hoffmann MF, Preissner R, Dunkel M, Gewiess A, Preissner S. Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PLoS ONE. 2013;8(12):e82562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Tebani A, Afonso C, Marret S, Bekri S. Omics-based strategies in precision medicine: toward a paradigm shift in inborn errors of metabolism investigations. Int J Mol Sci. 2016;17(9):1555. doi:10.3390/ijms17091555.

    Article  PubMed Central  Google Scholar 

  191. Nissen SE. The rise and fall of rosiglitazone. Eur Heart J. 2010;31(7):773–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Chris Weyer for constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Krentz.

Ethics declarations

Conflict of interest

Drs. Krentz and Rodriguez-Araujo are employees of ProSciento which performs early-phase studies of diabetes and obesity medications.

Funding

No funding was received for the preparation of this review article.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s40290-018-0224-z.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krentz, A.J., Rodriguez-Araujo, G. Cardiovascular Outcome Trials of Diabetes and Obesity Drugs: Implications for Conditional Approval and Early Phase Clinical Development. Pharm Med 31, 399–421 (2017). https://doi.org/10.1007/s40290-017-0209-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40290-017-0209-3

Navigation