Skip to main content

Dynamic Fracture Analysis of Sandwich Composites with Face Sheet/Core Debond by the Finite Element Method

  • Chapter
  • First Online:
Dynamical Processes in Generalized Continua and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 103))

Abstract

Numerical simulations using the finite element analyses within the code ABAQUS™ are used to study a dynamic fracture behaviour developing along the face sheet/core interface in sandwich panels. First, a virtual fracture test—the double cantilever sandwich beam subjected to uneven bending moments is simulated. In such analyses, the dynamic energy release rates and near-tip displacement and stress fields are extracted from finite element models developed within the two-dimensional elastodynamic theory and cohesive elements. These parameters are a basis for understanding the face sheet/core interface fracture in sandwich materials. Important computed results are that the inertia effects change the behaviour of fracture debonding parameters. Moreover, the analyses demonstrated the capability and the reliability of the finite element modelling technique for solving dynamic fracture mechanics problems. Also simulated and discussed is the dynamic interface crack progression in the sandwich specimen. In the second part of the work, the computational models are modified for analysing dynamic fracture of sandwich panels. For this, tree-dimensional models of sandwich plates with a penny-shaped debonded zone have been elaborated. In all simulations, computations of dynamic interface crack propagation are carried out in such a way when the crack history and inertial effects on cracking are direct outcomes of the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altenbach, H., Altenbach, J., Kissing, W.: Mechanics of Composite Structural Elements, 2nd edn. Springer Nature, Singapore Pte Ltd. (2018)

    Book  Google Scholar 

  2. Karlsson, K.F., Åström, B.T.: Manufacturing and applications of structural sandwich components. Compos. Part A 28A, 97–111 (1997)

    Article  Google Scholar 

  3. Shen, C., Xin, F.X., Lu, T.J.: Theoretical model for sound transmission through finite sandwich structures with corrugated core. Int. J. Non-Linear Mech. 47(10), 1066–1072 (2012)

    Article  Google Scholar 

  4. Amraei, M., Shahravi, M., Noori, Z., Lenjani, A.: Application of aluminium honeycomb sandwich panel as an energy absorber of high-speed train nose. J. Compos. Mater. 48(9), 1027–1037 (2014)

    Article  Google Scholar 

  5. Xie, S., Liang, X., Zhou, H.: Design and analysis of a composite energy-absorbing structure for use on railway vehicles. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 230(3), 825–839 (2016)

    Article  Google Scholar 

  6. Funari, M.F., Greco, F., Lonetti, P.: Sandwich panels under interfacial debonding mechanisms. Compos. Struct. 203, 310–320 (2018)

    Article  Google Scholar 

  7. Vitale, J.P., Francucci, G., Xiong, J., Stocchi, A.: Failure mode maps of natural and synthetic fiber reinforced composite sandwich panels. Compos. Part A 94, 217–225 (2017)

    Article  Google Scholar 

  8. Burlayenko, V.N., Sadowski, T.: Dynamic analysis of debonded sandwich plates with flexible core—numerical aspects and simulation. In: Altenbach, H., Eremeyev, V.A. (eds.) Shell-like Structures, Advanced Structured Materials, vol. 15, pp. 415–440. Springer, Berlin, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Idriss, M., El Mahi, A.: Effects of debonding length on the fatigue and vibration behaviour of sandwich composite. J. Compos. Mater. 51(13), 1839–1847 (2017)

    Article  Google Scholar 

  10. Juhász, Z., Turcsán, T., Tóth, T.B., Szekrényes, A.: Sensitivity analysis for frequency based prediction of crack size in composite plates with through-the-width delamination. Int. J. Damage Mech. 27(6), 859–876 (2018)

    Article  Google Scholar 

  11. Elmalich, D., Rabinovitch, O.: On the effect of inter-laminar contact on the dynamics of locally delaminated FRP strengthened walls. Int. J. Non-Linear Mech. 77, 141–157 (2015)

    Article  Google Scholar 

  12. Pölöskei, T., Szekrényes, A.: Quasi-periodic excitation in a delaminated composite beam. Compos. Struct. 159, 677–688 (2017)

    Article  Google Scholar 

  13. Qu, Y., Meng, G.: Nonlinear vibro-acoustic analysis of composite sandwich plates with skin-core debondings. AIAA J. 55(5), 1723–1733 (2017)

    Article  Google Scholar 

  14. Burlayenko, V.N., Sadowski, T.: Linear and nonlinear dynamic analyses of sandwich panels with face sheet-to-core debonding. Shock Vib. 2018(Article ID 5715863) (2018)

    Google Scholar 

  15. Saito, A.: Nonlinear resonances of chains of thin elastic beams with intermittent contact. ASME J. Comput. Nonlinear Dyn. 13(8) (2018) (in press)

    Google Scholar 

  16. Burlayenko, V.N., Sadowski, T.: Numerical modeling of sandwich plates with partially dedonded skin-to-core interface for damage detection. In: De Roeck, G., Degrande, G., Lombaert, G., Muller, G. (eds.) Proceedings of the 8th International Conference on Structural Dynamics (EURODYN), pp. 2242–2249, Leuven, Belgium (2011)

    Google Scholar 

  17. Farhana, N.I.E., Abdul Majid, M.S., Paulraj, M.P., Fakhzan, M.N., Ahmadhilmi, E., Gibson, A.G.: A novel vibration based non-destructive testing for predicting glass fibre/matrix volume fraction in composites using a neural network model. Compos. Struct. 144, 96–107 (2016)

    Article  Google Scholar 

  18. Lu, L., Song, H., Yuan, W., Huang, C.: Baseline-free damage identification of metallic sandwich panels with truss core based on vibration characteristics. Struct. Health Monit. Int. J. 16(1), 24–38 (2017)

    Article  Google Scholar 

  19. Meruane, V., Lasen, M., Droguett, E.L., Ortiz-Bernardin, A.: Modal strain energy-based debonding assessment of sandwich panels using a linear approximation with maximum entropy. Entropy 19(11), 22 (2017)

    Google Scholar 

  20. Seguel, F., Meruane, V.: Damage assessment in a sandwich panel based on full-field vibration measurements. J. Sound Vib. 417(17), 1–18 (2018)

    Article  Google Scholar 

  21. Rinker, M., Ratcliffe, J.G., Adams, D.O., Kruger, R.: Characterizing facesheet/core disbonding in honeycomb core sandwich structure. NASA/CR-2013-217959, Langley Research Center, Hampton, Virginia (2013)

    Google Scholar 

  22. Suo, Z., Hutchinson, J.W.: Sandwich test specimens for measuring interface crack toughness. Mater. Sci. Eng. A 107, 135–143 (1989)

    Article  Google Scholar 

  23. Krueger, R., Minguet, P.J., O’Brien, T.K.: Implementation of interlaminar fracture mechanics in design: an overview. In: Proceedings of ICCM14, San Diego (2003)

    Google Scholar 

  24. Szekrényes, A.: Crack stability of fracture specimens used to test unidirectional fiber reinforced material. Exp. Mech. 50, 473–482 (2010)

    Article  Google Scholar 

  25. Samborski, S.: Analysis of the end-notched flexure test configuration applicability for mechanically coupled fiber reinforced composite laminates. Compos. Struct. 163, 342–349 (2017)

    Article  Google Scholar 

  26. Valvo, P.S.: The effects of shear on Mode II delamination: a critical review. Frattura ed Integrita Strutturale 12(44), 123–139 (2018)

    Article  Google Scholar 

  27. Adams, D.O., Kessler, J.A., Kuramoto, B., Bluth, J., Weaver, C., Gill, A.: Development and evaluation of fracture mechanics test methods for sandwich composites. In: Proceedings of FAA JAMS Technical Review Meeting, Wichita, KS (2010)

    Google Scholar 

  28. Krueger, R., Shivakumar, K.N., Raju, I.S.: Fracture mechanics analyses for interface crack problems—a Review. In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (2013)

    Google Scholar 

  29. Freund, L.B.: Dynamic Fracture Mechanics. Cambridge University Press, Cambridge, Massachusetts (1990)

    Book  Google Scholar 

  30. Lambros, J., Rosakis, A.J.: Development of a dynamic decohesion criterion for subsonic fracture of the interface between two dissimilar materials. Proc. R. Soc. Lond. A 451, 711–736 (1995)

    Article  Google Scholar 

  31. Lambros, J., Rosakis, A.J.: Shear dominated transonic interface crack growth in a bimaterial I. Experimental observations. J. Mech. Phys. Solids 43(2), 169–188 (1995)

    Article  Google Scholar 

  32. Cocker, D., Rosakis, A.J.: Experimental observations of intersonic crack growth in asymmetrically loaded unidirectional composite plates. Philos. Mag. A 81(3), 571–595 (2001)

    Article  Google Scholar 

  33. Ravi-Chandar, K.: Experimental challenges in the investigation of dynamic fracture of brittle materials. In: Bouchaund, E. (ed.) Physical Aspects of Fracture, pp. 323–342. Springer, Netherlands (2001)

    Chapter  Google Scholar 

  34. Willis, J.R.: Fracture mechanics of interfacial cracks. J. Mech. Phys. Solids 19, 353–368 (1971)

    Article  Google Scholar 

  35. Wu, K.-C.: Explicit crack tip fields of an extending interface crack in an anisotropic bimaterial. Int. J. Solid Struct. 27(4), 455–466 (1991)

    Article  MathSciNet  Google Scholar 

  36. Yang, W., Suo, Z., Shih, C.F.: Mechanics of dynamic debonding. Proc. R. Soc. Lond. A 433, 679–697 (1991)

    Article  Google Scholar 

  37. Petrova, V., Schmauder, S.: Mathematical modelling and thermal stress intensity factors evaluation for an interface crack in the presence of a system of cracks in functionally graded/homogeneous bimaterials. Comput. Mater. Sci. 52(1), 171–177 (2012)

    Article  Google Scholar 

  38. Massabò, R., Cavicchi, A.: Interaction effects of multiple damage mechanisms in composite sandwich beams subject to time dependent loading. Int. J. Solids Struct. 49, 720–738 (2012)

    Article  Google Scholar 

  39. Szekrényes, A.: Analytical solution of some delamination scenarios in thick structural sandwich plates. J. Sandw. Struct. Mater. (2017) (In press)

    Google Scholar 

  40. Xu, X.P., Needlwman, A.: Numerical simulations of dynamic crack growth along an interface. Int. J. Fract. 74, 289–324 (1996)

    Article  Google Scholar 

  41. Dwivedi, S.K., Espinosa, H.D.: Modeling dynamic crack propagation in fiber reinforced composites including frictional effects. Mech. Mater. 35, 481–509 (2003)

    Article  Google Scholar 

  42. Caliskan, U., Apalak, M.K.: Bending impact behaviour of sandwich beams with expanded polystyrene foam core: analysis. J. Sandw. Struct. Mater. (2017) (in press)

    Google Scholar 

  43. Mariggiò, G., Reinoso, J., Paggi, M., Corrado, M.: Peeling of thick adhesive interfaces: the role of dynamics and geometrical nonlinearity. Mech. Res. Commun. 94, 21–24 (2018)

    Article  Google Scholar 

  44. Yan, Q., Xu, Y., Zhang, W., Geng, P., Yang, W.: Numerical analysis of the cracking and failure behaviors of segmental lining structure of an underwater shield tunnel subjected to a derailed high-speed train impact. Tunn. Undergr. Space Technol. 72, 41–54 (2018)

    Article  Google Scholar 

  45. Reinoso, J., Catalanotti, G., Blázquez, A., Areias, P., Camanhod, P.P., París, F.: A consistent anisotropic damage model for laminated fiber-reinforced composites using the 3D-version of the Puck failure criterion. Int. J. Solids Struct. 126–127, 37–53 (2017)

    Article  Google Scholar 

  46. Burlayenko, V.N., Sadowski, T.: Modeling of the dynamic debonding growth of sandwich plates. In: Mikhlin, Y.V., Perepelkin, N.V. (eds.) Proceedings of the 4th International Conference on Nonlinear Dynamics ND-KhPI2013, pp. 225–230. Tochka Publishing, Sevastopol, Ukraine (2013)

    Google Scholar 

  47. Burlayenko, V.N., Sadowski, T.: Simulations of post-impact skin/core debond growth in sandwich plates under impulsive loading. J. Appl. Nonlinear Dyn. 3(4), 369–379 (2014)

    Article  Google Scholar 

  48. Ji, W., Waas, A.M.: Dynamic failure of a sandwich structure subjected to an in-plane axial impact. Compos. Struct. 180, 751–759 (2017)

    Article  Google Scholar 

  49. ABAQUS Users manual, version 2016 (2016) Dassault Systémes Simulia Corporation, Providence, RI, USA

    Google Scholar 

  50. Lekhnitskii, S.: Theory of an Anisotropic Elastic Body. San Francisco, Holden-Day (1963)

    Google Scholar 

  51. Park, K.S., Paulino, G.H.: Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces. Appl. Mech. Rev. 64 (2013)

    Google Scholar 

  52. Camanho, P.P., Dávila, C.G., de Moura, M.F.: Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37(16), 1415–1438 (2003)

    Article  Google Scholar 

  53. Burlayenko, V.N., Sadowski, T.: Transient dynamic response of debonded sandwich plates predicted with finite element analysis. Meccanica 49, 2617–2633 (2014)

    Article  MathSciNet  Google Scholar 

  54. Burlayenko, V.N., Sadowski, T.: Nonlinear dynamic analysis of harmonically excited debonded sandwich plates using finite element modelling. Compos. Struct. 108, 354–366 (2014)

    Article  Google Scholar 

  55. Aragón, A.M., Molinari, J.-F.: A hierarchical detection framework for computational contact mechanics. Comput. Methods Appl. Mech. Eng. 268, 574588 (2014)

    Article  MathSciNet  Google Scholar 

  56. Bathe, K.J., Wilson, E.L.: Numerical Methods in Finite Element Analysis. Prentice-Hall, Englewood Cliffs, NJ, USA (1977)

    MATH  Google Scholar 

  57. Hutchinson, J.W., Suo, Z.: Mixed mode cracking in layered materials. In: Advances in Applied Mechanics, vol. 29, pp. 63–191. Academic Press Inc. (1992)

    Google Scholar 

  58. Wang, T.C., Shih, C.F., Suo, Z.: Crack extension and kinking in laminates and bicrystals. Int. J. Solids Struct. 29, 327344 (1992)

    MATH  Google Scholar 

  59. Nakamura, T., Shih, C.F., Freund, L.B.: Computational methods based on an energy integral in dynamic fracture. Int. J. Fract. 27, 229–243 (1985)

    Article  Google Scholar 

  60. Shih, C.F., Asaro, R.J.: Elastic-plastic analysis of cracks on bimaterial interfaces: part I small scale yielding. J. Appl. Mech. 55(2), 299316 (1988)

    Article  Google Scholar 

  61. Deng, X.: Mechanics of debonding and delamination in composites: asymptotic studies. Compos. Eng. 5(10–11), 1299–1315 (1995)

    Article  Google Scholar 

  62. Smelser, R.E.: Evaluation of stress intensity factors for bi-materials bodies using numerical crack flank displacement data. Int. J. Fract. 15, 135–315 (1979)

    Google Scholar 

  63. Marsavina, L., Sadowski, T.: Kinked crack at a bi-material ceramic interface—numerical determination of fracture parameters. Comput. Mater. Sci. 44, 941–950 (2009)

    Article  Google Scholar 

  64. Sørensen, B.F., Jørgensen, K., Jacobsen, T.K., Østregaard, R.C.: DCB-specimen loaded with uneven bending moments. Int. J. Fract. 141, 163–176 (2006)

    Article  Google Scholar 

  65. Burlayenko, V.N., Sadowski, T., Pietras, D.: Influence of dynamic loading on fracture behaviour of DCB sandwich specimen. In: Proceedings of the 1st International Conference on Computational Methods and Applications in Engineering (ICCMAE), 23–26 May 2018, UPT, Timisoara, Romania. ITM Web of Conferences (2018) (Submitted)

    Google Scholar 

  66. Burlayenko, V.N., Sadowski, T., Pietras, D.: A numerical analysis of near tip fields in a bending moment-loaded double cantilever sandwich beam fracture specimen. Bull. NTU “KhPI”. Ser. Math. Model. Eng. Technol. 3(1279), 9–14 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors would like to mention that this research has been done within the POLONEZ 2 Project, Grant Agreement No. UMO-2016/21/P/ST8/00790, supported by the National Science Centre of Poland at the Lublin University of Technology within the European Unions Horizon 2020 research and innovation programme under the Marie Skodowska-Curie Grant Agreement No. 665778. The second author (H. Altenbach) also would like to acknowledge the financial support of the Foundation for Polish Science for his stay at the Lublin University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav N. Burlayenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burlayenko, V.N., Altenbach, H., Sadowski, T. (2019). Dynamic Fracture Analysis of Sandwich Composites with Face Sheet/Core Debond by the Finite Element Method. In: Altenbach, H., Belyaev, A., Eremeyev, V., Krivtsov, A., Porubov, A. (eds) Dynamical Processes in Generalized Continua and Structures. Advanced Structured Materials, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-030-11665-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11665-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11664-4

  • Online ISBN: 978-3-030-11665-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics