Skip to main content

Surface Waves in Dissipative Poroviscoelastic Layered Half Space: Boundary Element Analyses

  • Chapter
  • First Online:
Dynamical Processes in Generalized Continua and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 103))

Abstract

Wave propagation in a poroelastic layer located on a poroelastic halfspace is studied. A fully saturated poroelastic medium is described using Biot’s mathematical model with four base functions—pore pressure and skeleton displacements. Viscoelastic behavior of porous medium due to viscoelastic properties of the skeleton is considered. The standard viscoelastic solid model is used. The boundary-value problem of the three-dimensional dynamic poroelasticity is written in terms of Laplace transforms. Direct approach of the boundary integral equation (BIE) method is employed. The boundary-element approach is based on the mixed boundary-element discretization of surface with generalized quadrangular elements. Time-step scheme for numerical inversion of the Laplace transforms is used obtain the solution of boundary value problem. To verify the boundary-element model, poroelastic solutions are compared with elastic ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chapelle, D., Gerbeau, J.-F., Sainte-Marie, J., Vignon-Clementel, I.E.: A poroelastic model valid in large strains with applications to perfusion in cardiac modeling. Comput. Mech. 46, 91–101 (2010). https://doi.org/10.1007/s00466-009-0452-x

    Article  MathSciNet  MATH  Google Scholar 

  2. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. I. The continuous in time case. Comput. Geosci. 11, 131–144 (2007). https://doi.org/10.1007/s10596-007-9045-y

    Article  MathSciNet  MATH  Google Scholar 

  3. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. II. The discrete-in-time case. Comput. Geosci. 11, 145–158 (2007). https://doi.org/10.1007/s10596-007-9044-z

    Article  MathSciNet  MATH  Google Scholar 

  4. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and discontinuous Galerkin finite element methods for poroelasticity. Comput. Geosci. 12, 417–435 (2008). https://doi.org/10.1007/s10596-008-9082-1

    Article  MathSciNet  MATH  Google Scholar 

  5. Causin, P., Guidoboni, G., Harris, A., Prada, D., Sacco, R., Terragni, S.: A poroelastic model for the perfusion of the lamina cribrosa in the optic nerve head. Math. Biosci. 257, 33–41 (2014). https://doi.org/10.1016/j.mbs.2014.08.002

    Article  MathSciNet  MATH  Google Scholar 

  6. Sobhaniaragh, B., Mansur, W.J., Peters, F.C.: Three-dimensional investigation of multiple stage hydraulic fracturing in unconventional reservoirs. J. Petrol. Sci. Eng. 146, 1063–1078 (2016)

    Article  Google Scholar 

  7. Nazarova, L.A., Nazarov, L.A.: Evolution of stresses and permeability of fractured-and-porous rock mass around a production well. J. Min. Sci. 52(3), 424–431 (2016)

    Article  Google Scholar 

  8. Biot, M.A.: General theory of three dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941). https://doi.org/10.1063/1.1712886

    Article  MATH  Google Scholar 

  9. Jin, B., Liu, H.: Horizontal vibrations of a disk on a poroelastic half-space. Soil Dyn. Earthq. Eng. J. 19(4), 269–275 (2000)

    Article  Google Scholar 

  10. Jin, B., Liu, H.: Rocking vibrations of rigid disk on saturated poroelastic medium. Soil Dyn. Earthq. Eng. J. 19(7), 469–472 (2000)

    Article  Google Scholar 

  11. Jin, B., Liu, H.: Vertical dynamic response of a disk on a saturated poroelastic halfspace. Soil Dyn. Earthq. Eng. J. 18(6), 437–443 (1999)

    Article  Google Scholar 

  12. Gazetas, G., Petrakis, E.: Offshore caissons on porous saturated soil. In: Parkash, S. (ed.), Proceedings of International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, pp. 381–386. University of Missouri-Rolla, Rolla (1981)

    Google Scholar 

  13. Degrande, G., De Roeck, G., Van Den Broeck, P.: Wave propagation in layered dry, saturated and unsaturated poroelastic media. Int. J. Solids Struct. 35(34–35), 4753–4778 (1998)

    Article  Google Scholar 

  14. Paul, S.: On the displacements produced in a porous elastic half-space by an impulsive line load (non-dissipative case). Pure Appl. Geophys. 114(4), 605–614 (1976)

    Article  Google Scholar 

  15. Paul, S.: On the disturbance produced in a semi-infinite poroelastic medium by a surface load. Pure Appl. Geophys. 114(4), 615–627 (1976)

    Article  Google Scholar 

  16. Philippacopoulos, A.J.: Axisymmetric vibrations of disk resting on saturated layered half-space. J. Eng. Mech. 115(10), 2301–2322 (1989)

    Article  Google Scholar 

  17. Philippacopoulos, A.J.: Buried point source in a poroelastic half-space. J. Eng. Mech. 123(8), 860–869 (1997)

    Article  Google Scholar 

  18. Schanz, M.: Poroelastodynamics: linear models, analytical solutions, and numerical methods. Appl. Mech. Rev. 62, 030803 (2009). https://doi.org/10.1115/1.3090831

    Article  Google Scholar 

  19. Gatmiri, B., Kamalian, M.: On the fundamental solution of dynamic poroelastic boundary integral equations in time domain. Int. J. Geomech. 2(4), 381–398 (2002)

    Article  Google Scholar 

  20. Gatmiri, B., Nguyen, K.V.: Time 2D fundamental solution for saturated porous media with incompressible fluid. Commun. Numer. Methods Eng. 21(3), 119–132 (2005)

    Article  MathSciNet  Google Scholar 

  21. Seyerafian, S., Gatmiri B., Nourzad, A.: Green functions for a continuously nonhomogeneous saturated media. Int. J. Comput. Methods Eng. Sci. (CMES) 15(2), 115–125 (2006)

    Google Scholar 

  22. Gatmiri, B., Eslami, H.: Scattering of harmonic waves by a circular cavity in a porous medium: complex functions theory approach. Int. J. Geomech. 7(5), 371–381 (2007)

    Article  Google Scholar 

  23. Theodorakopoulos, D.D., Beskosa, D.E.: Application of Biot’s poroelasticity to some soil dynamics problems in civil engineering. Soil Dyn. Earthq. Eng. 26, 666–679 (2006)

    Article  Google Scholar 

  24. Dominguez, J.: Boundary elements in dynamics. Computational Mechanics Publications, Southampton (1993)

    MATH  Google Scholar 

  25. Albers, B., Savidis, S., Tasan, H.E., Von Estroff, O., Gehlken, M.: BEM and FEM results of displacements in a poroelastic column. Int. J. Appl. Math. Comput. Sci. 22(4), 883–896 (2012)

    Article  MathSciNet  Google Scholar 

  26. Igumnov, L.A., Petrov, A.N., Vorobtsov, I.V.: Analysis of 3D poroelastodynamics using BEM based on modified time-step scheme. IOP Conf. Ser.: Earth Environ. Sci. 87(8), 082022 (2017)

    Google Scholar 

  27. Igumnov, L., Ipatov, A., Belov, A., Petrov, A.: A combined application of boundary-element and Runge-Kutta methods in three-dimensional elasticity and poroelasticity. EPJ Web Conf. 94, 04026 (2015)

    Article  Google Scholar 

  28. Igumnov, L.A., Litvinchuk, S.Y., Petrov, A.N., Belov, A.A.: Boundary-element modeling of 3-D poroelastic half-space dynamics. Adv. Mater. Res. 1040, 881–885 (2014)

    Google Scholar 

  29. Dineva, P., Datcheva, M., Schanz, T.: BIEM for seismic wave propagation in fluid saturated multilayered media. In: Proceedings of the 6th European Conference on Numerical Methods in Geotechnical Engineering—Numerical Methods in Geotechnical Engineering. (2006)

    Google Scholar 

  30. Schanz, M., Antes, H.: Waves in poroelastic half space: boundary element analyses. In: Ehlers, W., Bluhm, J. (eds.) Porous Media. Springer, Berlin, Heidelberg (2002)

    Google Scholar 

  31. Mow, V.C., Lai, W.M.: Recent developments in synovial joint biomechanics. SIAM Rev. 22, 275 (1980)

    Article  MathSciNet  Google Scholar 

  32. Mow, V.C., Roth, V., Armstrong, C.G.: Biomechanics of joint cartilage. In: Frankel, V.H., Nordin, M.A. (eds.) Basic biomechanics of the skeletal system, p. 61. Lea and Febiger, Philadelphia (1980)

    Google Scholar 

  33. Ehlers, W., Markert, B.: On the viscoelastic behaviour of fluid-saturated porous materials. Granul. Matter. 2(3), 153–161 (2000)

    Google Scholar 

  34. Mak, A.F.: The apparent viscoelastic behaviour of articular cartilage—the contribution from the intrinsic matrix viscoelasticity and interstitial fluid flows. J. Biomech. Eng. 108, 123–130 (1986)

    Article  Google Scholar 

  35. Banks, H.T., Bekele-Maxwell, K., Bociu, L., Noorman, M., Guidoboni, G.: Sensitivity analysis in poro-elastic and poro-visco-elastic models with respect to boundary data. Q. Appl. Math. 75(4), 697–735 (2017)

    Article  MathSciNet  Google Scholar 

  36. Ipatov, A.A., Igumnov, L.A., Belov, A.A.: Boundary element method in three dimensional transient poroviscoelastic problems. Springer Proc. Phys. 193, 331–346 (2017)

    Article  Google Scholar 

  37. Igumnov, L.A., Litvinchuk, SYu., Belov, A.A., Ipatov, A.A.: Boundary element formulation for numerical surface wave modelling in poroviscoelastisity. Key Eng. Mater. 685, 172–176 (2016)

    Article  Google Scholar 

  38. Wuttke, F., Dineva, P., Fontara, I.-K.: Influence of poroelasticity on the 3D seismic response of complex geological media. J. Theor. Appl. Mech. 47(2), 34–60 (2017)

    Article  MathSciNet  Google Scholar 

  39. Igumnov, L.A., Petrov, A.N.: Dynamics of partially saturated poroelastic solids by boundary-element method. PNRPU Mech. Bull. 47(3), 47–61 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Government of the Russian Federation (contract No. 14.Y26.31.0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Igumnov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dell’Isola, F., Igumnov, L.A., Litvinchuk, S.Y., Ipatov, A.A., Petrov, A.N., Modin, I.A. (2019). Surface Waves in Dissipative Poroviscoelastic Layered Half Space: Boundary Element Analyses. In: Altenbach, H., Belyaev, A., Eremeyev, V., Krivtsov, A., Porubov, A. (eds) Dynamical Processes in Generalized Continua and Structures. Advanced Structured Materials, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-030-11665-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11665-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11664-4

  • Online ISBN: 978-3-030-11665-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics