Skip to main content
Log in

A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete-in-time case

  • Origina Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this paper, we formulate a finite element procedure for approximating the coupled fluid and mechanics in Biot’s consolidation model of poroelasticity. Here, we approximate the pressure by a mixed finite element method and the displacements by a Galerkin method. Theoretical convergence error estimates are derived in a discrete-in-time setting. Of particular interest is the case when the lowest-order Raviart–Thomas approximating space or cell-centered finite differences are used in the mixed formulation and continuous piecewise linear approximations are used for displacements. This approach appears to be the one most frequently applied to existing reservoir engineering simulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—A general purpose object oriented finite element library. Report ISC-06-02-MATH, Institute for Scientific Computation, Texas A&M University, College Station (2006)

  2. Barry, S., Mercer, G.: Exact solutions for two-dimensional time dependent flow and deformation within a poroelastic medium. J. Appl. Mech. 66, 536–540 (1999)

    MathSciNet  Google Scholar 

  3. Biot, M.: General theory of three-dimensional consolidation. J. Appl. Phys. 2, 155–164 (1941)

    Article  Google Scholar 

  4. Biot, M.: Theory of elasticity and consolidation for a porous anisotropic media. J. Appl. Phys. 26(2), 182–185 (1955)

    Article  MathSciNet  Google Scholar 

  5. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, Berlin Heidelberg New York (1994)

    MATH  Google Scholar 

  6. Coussy, O.: Poromechanics. Wiley, New York (2004)

    Google Scholar 

  7. Gautschi, W.: Numerical Analysis: An Introduction. Birkhäuser, Boston (1997)

    MATH  Google Scholar 

  8. Lipnikov, K.: Numerical methods for the Biot model in poroelasticity. Ph.D. thesis, University of Houston (2002)

  9. Murad, M., Loula, A.: Improved accuracy in finite element analysis of Biot’s consolidation problem. Comput. Methods Appl. Mech. Eng. 95, 359–382 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nedelec, J.: Mixed finite elements in \({\mathbb R3}\). Numer. Math. 35, 315–341 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. Phillips, P.J.,Wheeler,M.F.: A coupling of mixed and continuous Galerkin finite elements for poroelasticity I: the continuous in time case. Comput. Geosci. doi:10.1007/s10596-007-9045-y (2007)

  12. Raviart, R., Thomas, J.: Mixed finite element method for second order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, Berlin Heidelberg New York (1977)

    Chapter  Google Scholar 

  13. Rivière, B., Wheeler, M.: Discontinuous Galerkin method applied to non- linear parabolic problems. In: Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation, and Applications. Lecture Notes in Computational Science and Engineering Edition, vol. 11. Springer, Berlin Heidelberg New York (1999)

    Google Scholar 

  14. Rivière, B., Wheeler, M.: Optimal error estimates applied to linear elasticity. Technical Report, ICES Report. ICES, Austin (2000)

  15. Showalter, R.E.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 251, 310–340 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Terzaghi, K.: Die Berechnung der Durchlassigkeits-ziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Sitzung Berichte. Akadamie der Wissenschaften, Wien Mathematisch-Naturwissenschaftliche Klasse, Abteilung IIa. 132, 105–124 (1923)

  17. Terzaghi, K.: Theoretical Soil Mechanics. Wiley, New York (1943)

    Google Scholar 

  18. Wheeler, M.F.: A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary F. Wheeler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, P.J., Wheeler, M.F. A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete-in-time case. Comput Geosci 11, 145–158 (2007). https://doi.org/10.1007/s10596-007-9044-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-007-9044-z

Keywords

Navigation