Skip to main content

Risk Alleles for Drug Targets: Genomic Markers of Drug Response

  • Chapter
  • First Online:
Biomarkers in Inflammatory Bowel Diseases
  • 604 Accesses

Abstract

The armamentarium for the treatment of inflammatory bowel disease (IBD) is growing with the introduction of new targeted therapies. Developing precision medicine approaches using our knowledge of IBD genetics is of great interest and importance. To date, research on genomic markers of drug response has largely focused on anti-tumor necrosis factor alpha (TNF) agents. Currently, no genetic markers have been validated for use in clinical practice to guide treatment selection. However, several studies have highlighted promising blood- and tissue-based markers of drug response. In this chapter, we provide an overview of the current evidence for genomic markers of response to biologics and discuss potential future directions for predictive biomarker discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cleynen I, Boucher G, Jostins L, Schumm LP, Zeissig S, Ahmad T, et al. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet. 2016;387:156–67.

    Article  Google Scholar 

  2. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24.

    Article  CAS  Google Scholar 

  3. Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47:979–86.

    Article  CAS  Google Scholar 

  4. McGovern DPB, Kugathasan S, Cho JH. Genetics of inflammatory bowel diseases. Gastroenterology. 2015;149:1163–1176.e2.

    Article  CAS  Google Scholar 

  5. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314:1461–3.

    Article  CAS  Google Scholar 

  6. Pidasheva S, Trifari S, Phillips A, Hackney JA, Ma Y, Smith A, et al. Functional studies on the IBD susceptibility gene IL23R implicate reduced receptor function in the protective genetic variant R381Q. PLoS One. 2011;6:e25038.

    Article  CAS  Google Scholar 

  7. de Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet. 2017;49:256–61.

    Article  Google Scholar 

  8. Taylor KD, Plevy SE, Yang H, Landers CJ, Barry MJ, Rotter JI, et al. ANCA pattern and LTA haplotype relationship to clinical responses to anti-TNF antibody treatment in Crohn’s disease. Gastroenterology. 2001;120:1347–55.

    Article  CAS  Google Scholar 

  9. Mascheretti S, Hampe J, Kühbacher T, Herfarth H, Krawczak M, Fölsch UR, et al. Pharmacogenetic investigation of the TNF/TNF-receptor system in patients with chronic active Crohn’s disease treated with infliximab. Pharmacogenomics J. 2002;2:127–36.

    Article  CAS  Google Scholar 

  10. Pierik M, Vermeire S, Steen KV, Joossens S, Claessens G, Vlietinck R, et al. Tumour necrosis factor-alpha receptor 1 and 2 polymorphisms in inflammatory bowel disease and their association with response to infliximab. Aliment Pharmacol Ther. 2004;20:303–10.

    Article  CAS  Google Scholar 

  11. Vermeire S, Louis E, Rutgeerts P, De Vos M, Van Gossum A, Belaiche J, et al. NOD2/CARD15 does not influence response to infliximab in Crohn’s disease. Gastroenterology. 2002;123:106–11.

    Article  CAS  Google Scholar 

  12. Niess JH, Klaus J, Stephani J, Pflüger C, Degenkolb N, Spaniol U, et al. NOD2 polymorphism predicts response to treatment in Crohn’s disease – first steps to a personalized therapy. Dig Dis Sci. 2012;57:879–86.

    Article  CAS  Google Scholar 

  13. Urcelay E, Mendoza J-L, Martinez A, Fernandez L, Taxonera C, Diaz-Rubio M, et al. IBD5 polymorphisms in inflammatory bowel disease: association with response to infliximab. World J Gastroenterol. 2005;11:1187–92.

    Article  CAS  Google Scholar 

  14. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet. 2007;39:596–604.

    Article  CAS  Google Scholar 

  15. Koder S, Repnik K, Ferkolj I, Pernat C, Skok P, Weersma RK, et al. Genetic polymorphism in ATG16L1 gene influences the response to adalimumab in Crohn’s disease patients. Pharmacogenomics. 2015;16:191–204.

    Article  CAS  Google Scholar 

  16. Lügering A, Schmidt M, Lügering N, Pauels HG, Domschke W, Kucharzik T. Infliximab induces apoptosis in monocytes from patients with chronic active Crohn’s disease by using a caspase-dependent pathway. Gastroenterology. 2001;121:1145–57.

    Article  Google Scholar 

  17. Scallon BJ, Moore MA, Trinh H, Knight DM, Ghrayeb J. Chimeric anti-TNF-alpha monoclonal antibody cA2 binds recombinant transmembrane TNF-alpha and activates immune effector functions. Cytokine. 1995;7:251–9.

    Article  CAS  Google Scholar 

  18. Louis E, El Ghoul Z, Vermeire S, Dall’Ozzo S, Rutgeerts P, Paintaud G, et al. Association between polymorphism in IgG Fc receptor IIIa coding gene and biological response to infliximab in Crohn’s disease. Aliment Pharmacol Ther. 2004;19:511–9.

    Article  CAS  Google Scholar 

  19. Louis EJ, Watier HE, Schreiber S, Hampe J, Taillard F, Olson A, et al. Polymorphism in IgG Fc receptor gene FCGR3A and response to infliximab in Crohn’s disease: a subanalysis of the ACCENT I study. Pharmacogenet Genomics. 2006;16:911–4.

    Article  CAS  Google Scholar 

  20. Hlavaty T, Pierik M, Henckaerts L, Ferrante M, Joossens S, van Schuerbeek N, et al. Polymorphisms in apoptosis genes predict response to infliximab therapy in luminal and fistulizing Crohn’s disease. Aliment Pharmacol Ther. 2005;22:613–26.

    Article  CAS  Google Scholar 

  21. Bank S, Andersen PS, Burisch J, Pedersen N, Roug S, Galsgaard J, et al. Associations between functional polymorphisms in the NFκB signaling pathway and response to anti-TNF treatment in Danish patients with inflammatory bowel disease. Pharmacogenomics J. 2014;14:526–34.

    Article  CAS  Google Scholar 

  22. Urabe S, Isomoto H, Ishida T, Maeda K, Inamine T, Kondo S, et al. Genetic polymorphisms of IL-17F and TRAF3IP2 could be predictive factors of the long-term effect of infliximab against Crohn’s disease. Biomed Res Int. 2015;2015:416838.

    Article  Google Scholar 

  23. Linares-Pineda TM, Cañadas-Garre M, Sánchez-Pozo A, Calleja-Hernández MÁ. Pharmacogenetic biomarkers of response in Crohn’s disease. Pharmacogenomics J. 2018;18:1–13.

    Article  CAS  Google Scholar 

  24. Bank S, Andersen PS, Burisch J, Pedersen N, Roug S, Galsgaard J, et al. Genetically determined high activity of IL-12 and IL-18 in ulcerative colitis and TLR5 in Crohns disease were associated with non-response to anti-TNF therapy. Pharmacogenomics J. 2018;18:87–97.

    Article  CAS  Google Scholar 

  25. Bek S, Nielsen JV, Bojesen AB, Franke A, Bank S, Vogel U, et al. Systematic review: genetic biomarkers associated with anti-TNF treatment response in inflammatory bowel diseases. Aliment Pharmacol Ther. 2016;44:554–67.

    Article  CAS  Google Scholar 

  26. Hlavaty T, Ferrante M, Henckaerts L, Pierik M, Rutgeerts P, Vermeire S. Predictive model for the outcome of infliximab therapy in Crohn’s disease based on apoptotic pharmacogenetic index and clinical predictors. Inflamm Bowel Dis. 2007;13:372–9.

    Article  Google Scholar 

  27. Dubinsky MC, Mei L, Friedman M, Dhere T, Haritunians T, Hakonarson H, et al. Genome wide association (GWA) predictors of anti-TNFalpha therapeutic responsiveness in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2010;16:1357–66.

    Article  Google Scholar 

  28. Barber GE, Yajnik V, Khalili H, Giallourakis C, Garber J, Xavier R, et al. Genetic markers predict primary non-response and durable response to anti-TNF biologic therapies in Crohn’s disease. Am J Gastroenterol. 2016;111:1816–22.

    Article  CAS  Google Scholar 

  29. Billiet T, Papamichael K, de Bruyn M, Verstockt B, Cleynen I, Princen F, et al. A matrix-based model predicts primary response to infliximab in Crohn’s disease. J Crohns Colitis. 2015;9:1120–6.

    Article  Google Scholar 

  30. Arijs I, Li K, Toedter G, Quintens R, Van Lommel L, Van Steen K, et al. Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut. 2009;58:1612–9.

    Article  CAS  Google Scholar 

  31. Arijs I, Quintens R, Van Lommel L, Van Steen K, De Hertogh G, Lemaire K, et al. Predictive value of epithelial gene expression profiles for response to infliximab in Crohn’s disease. Inflamm Bowel Dis. 2010;16:2090–8.

    Article  Google Scholar 

  32. Rismo R, Olsen T, Cui G, Christiansen I, Florholmen J, Goll R. Mucosal cytokine gene expression profiles as biomarkers of response to infliximab in ulcerative colitis. Scand J Gastroenterol. 2012;47:538–47.

    Article  CAS  Google Scholar 

  33. West NR, Hegazy AN, Owens BMJ, Bullers SJ, Linggi B, Buonocore S, et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat Med. 2017;23:579–89.

    Article  CAS  Google Scholar 

  34. Kugathasan S, Denson LA, Walters TD, Kim M-O, Marigorta UM, Schirmer M, et al. Prediction of complicated disease course for children newly diagnosed with Crohn’s disease: a multicentre inception cohort study. Lancet. 2017;389:1710–8.

    Article  Google Scholar 

  35. Ananthakrishnan AN, Luo C, Yajnik V, Khalili H, Garber JJ, Stevens BW, et al. Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases. Cell Host Microbe. 2017;21:603–610.e3.

    Article  CAS  Google Scholar 

  36. Vermeire S, O’Byrne S, Keir M, Williams M, Lu TT, Mansfield JC, et al. Etrolizumab as induction therapy for ulcerative colitis: a randomised, controlled, phase 2 trial. Lancet. 2014;384:309–18.

    Article  CAS  Google Scholar 

  37. Sands BE, Chen J, Feagan BG, Penney M, Rees WA, Danese S, et al. Efficacy and safety of MEDI2070, an antibody against interleukin 23, in patients with moderate to severe Crohn’s disease: a phase 2a study. Gastroenterology. 2017;153:77–86.e6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryan Ungaro or Judy Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ungaro, R., Cho, J. (2019). Risk Alleles for Drug Targets: Genomic Markers of Drug Response. In: Sheng Ding, N., De Cruz, P. (eds) Biomarkers in Inflammatory Bowel Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-11446-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11446-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11445-9

  • Online ISBN: 978-3-030-11446-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics