Skip to main content

Abstract

Multiplex immunoassays (IAs) refer to IA formats that can simultaneously determine many analytes in a single sample. They are becoming critically important in healthcare for the diagnosis of complex diseases, which require the simultaneous monitoring of multiple disease biomarkers. The ongoing research efforts are based on the determination of clinical scores for such complex diseases by assigning appropriate weightages to various biomarkers based on their contribution to the disease. Although a wide range of multiplex IA formats have been demonstrated by researchers with few of them commercialized successfully, there is still a need for the development of advanced and bioanalytically superior multiplex IA formats that are clinically and commercially viable. Further, the multiplex IAs should align well with the established and clinically accredited IAs. We provide here an overview of various multiplex IA formats and technologies together with the challenges involved, prospects, and guided insights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jung W, Han J, Choi J-W, Ahn CH. Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron Eng. 2015;132:46–57.

    Article  Google Scholar 

  2. Spindel S, Sapsford K. Evaluation of optical detection platforms for multiplexed detection of proteins and the need for point-of-care biosensors for clinical use. Sensors. 2014;14(12):22313–41.

    Article  Google Scholar 

  3. Luppa PB, Bietenbeck A, Beaudoin C, Giannetti A. Clinically relevant analytical techniques, organizational concepts for application and future perspectives of point-of-care testing. Biotechnol Adv. 2016;34(3):139–60.

    Article  Google Scholar 

  4. Vashist SK, Schneider EM, Luong JHT. Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management. Diagnostics. 2014;4(3):104–28.

    Article  Google Scholar 

  5. Peacock PM, Zhang WJ, Trimpin S. Advances in ionization for mass spectrometry. Anal Chem. 2017;89(1):372–88.

    Article  Google Scholar 

  6. Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015;33(11):692–705.

    Article  Google Scholar 

  7. Gauglitz G. Point-of-care platforms. Annu Rev Anal Chem. 2014;7:297–315.

    Article  Google Scholar 

  8. Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A. Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem. 2014;406(14):3263–77.

    Article  Google Scholar 

  9. Araz MK, Tentori AM, Herr AE. Microfluidic multiplexing in bioanalyses. J Lab Autom. 2013;18(5):350–66.

    Article  Google Scholar 

  10. Gordon J, Michel G. Discerning trends in multiplex immunoassay technology with potential for resource-limited settings. Clin Chem. 2012;58(4):690–8.

    Article  Google Scholar 

  11. Chin CD, Linder V, Sia SK. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip. 2012;12(12):2118–34.

    Article  Google Scholar 

  12. Rusling JF. Multiplexed electrochemical protein detection and translation to personalized cancer diagnostics. Anal Chem. 2013;85(11):5304–10.

    Article  Google Scholar 

  13. Dunbar SA. Applications of Luminex® xMAP™ technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta. 2006;363(1):71–82.

    Article  Google Scholar 

  14. Skogstrand K, Thorsen P, Norgaard-Pedersen B, Schendel DE, Sorensen LC, Hougaard DM. Simultaneous measurement of 25 inflammatory markers and neurotrophins in neonatal dried blood spots by immunoassay with xMAP technology. Clin Chem. 2005;51(10):1854–66.

    Article  Google Scholar 

  15. Kofoed K, Schneider UV, Scheel T, Andersen O, Eugen-Olsen J. Development and validation of a multiplex add-on assay for sepsis biomarkers using xMAP technology. Clin Chem. 2006;52(7):1284–93.

    Article  Google Scholar 

  16. Braeckmans K, De Smedt SC, Leblans M, Pauwels R, Demeester J. Encoding microcarriers: present and future technologies. Nat Rev Drug Discov. 2002;1(6):447–56.

    Article  Google Scholar 

  17. Ateya DA, Erickson JS, Howell PB Jr, Hilliard LR, Golden JP, Ligler FS. The good, the bad, and the tiny: a review of microflow cytometry. Anal Bioanal Chem. 2008;391(5):1485–98.

    Article  Google Scholar 

  18. Godin J, Chen CH, Cho SH, Qiao W, Tsai F, Lo YH. Microfluidics and photonics for bio-system-on-a-Chip: a review of advancements in technology towards a microfluidic flow cytometry chip. J Biophotonics. 2008;1(5):355–76.

    Article  Google Scholar 

  19. MSD Technology Platform. 2017. https://www.mesoscale.com/~/media/files/brochures/techbrochure.pdf

  20. Chowdhury F, Williams A, Johnson P. Validation and comparison of two multiplex technologies, Luminex® and Mesoscale discovery, for human cytokine profiling. J Immunol Methods. 2009;340(1):55–64.

    Article  Google Scholar 

  21. Fu Q, Zhu J, Van Eyk JE. Comparison of multiplex immunoassay platforms. Clin Chem. 2010;56(2):314–8.

    Article  Google Scholar 

  22. Breen EC, Reynolds SM, Cox C, Jacobson LP, Magpantay L, Mulder CB, et al. Multisite comparison of high-sensitivity multiplex cytokine assays. Clin Vaccine Immunol. 2011;18(8):1229–42.

    Article  Google Scholar 

  23. The EUROLINE: a new technique for extensive antibody profiles. 2017. https://www.euroimmun.com/products/techniken/euroline/euroline-beschreibung.html

  24. EUROLineScan. 2017. https://www.euroimmun.com/products/produkte-geraete-software/automatisierung-software/eurolinescan.html

  25. Triage. 2018. https://www.quidel.com/immunoassays/triage-test-kits

  26. Clark TJ, McPherson PH, Buechler KF. The triage cardiac panel: cardiac markers for the triage system. Point of Care. 2002;1(1):42–6.

    Google Scholar 

  27. sciFLEXARRAYER. 2018. https://www.scienion.com/products/sciflexarrayers/.

  28. sciREADER. 2018. https://www.scienion.com/products/scireaders/.

  29. sciCONSUMABLEs. 2018. https://www.scienion.com/products/sciconsumables/.

  30. Array. 2018. https://clinical.r-biopharm.com/technologies/array/.

  31. Biochip immunoassays. 2018. https://www.randox.com/biochip-immunoassays/.

  32. Multiplex testing. 2018. https://www.randox.com/multiplex-testing/.

  33. Multiplex assays. 2018. https://www.biovendor.com/multiplex-assays

  34. PictArrayâ„¢. 2018. https://www.pictordx.com/technology

  35. Technology. 2018. https://www.genspeed-biotech.com/genspeed-biotech.com/technology/2/181/.

  36. Gyrolab xPlore. 2018. http://www.gyros.com/products/systems/gyrolab-xplore/.

  37. Gyrolab CDs. 2018. http://www.gyrosproteintechnologies.com/gyrolab-cds-automated-immunoassays

  38. Piccolo Xpress. 2017. http://www.abaxis.com/medical/piccolo-xpress

  39. Gorkin R, Park J, Siegrist J, Amasia M, Lee BS, Park JM, et al. Centrifugal microfluidics for biomedical applications. Lab Chip. 2010;10(14):1758–73.

    Article  Google Scholar 

  40. Samsung LABGEO IB10. 2017. http://www.samsung.com/global/business/healthcare/healthcare/in-vitro-diagnostics/BCA-IB10/DE

  41. Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507(7491):181–9.

    Article  Google Scholar 

  42. Robinson T, Dittrich PS. Microfluidic technology for molecular diagnostics. Adv Biochem Eng Biotechnol. 2013;133:89–114.

    Google Scholar 

  43. Feng LN, Bian ZP, Peng J, Jiang F, Yang GH, Zhu YD, et al. Ultrasensitive multianalyte electrochemical immunoassay based on metal ion functionalized titanium phosphate nanospheres. Anal Chem. 2012;84(18):7810–5.

    Article  Google Scholar 

  44. Kong F-Y, Xu B-Y, Xu J-J, Chen HY. Simultaneous electrochemical immunoassay using CdS/DNA and PbS/DNA nanochains as labels. Biosens Bioelectron. 2012;39(1):177–82.

    Article  Google Scholar 

  45. Wang J, Liu G, Merkoci A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. J Am Chem Soc. 2003;125(11):3214–5.

    Article  Google Scholar 

  46. Tang D, Hou L, Niessner R, Xu M, Gao Z, Knopp DJB, et al. Multiplexed electrochemical immunoassay of biomarkers using metal sulfide quantum dot nanolabels and trifunctionalized magnetic beads. Biosens Bioelectron. 2013;46:37–43.

    Article  Google Scholar 

  47. Tang J, Tang D, Niessner R, Chen G, Knopp D. Magneto-controlled graphene immunosensing platform for simultaneous multiplexed electrochemical immunoassay using distinguishable signal tags. Anal Chem. 2011;83(13):5407–14.

    Article  Google Scholar 

  48. Sato K, Yamanaka M, Takahashi H, Tokeshi M, Kimura H, Kitamori T. Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon-gamma. Electrophoresis. 2002;23(5):734–9.

    Article  Google Scholar 

  49. Ko YJ, Maeng JH, Ahn Y, Hwang SY, Cho NG, Lee SH. Microchip-based multiplex electro-immunosensing system for the detection of cancer biomarkers. Electrophoresis. 2008;29(16):3466–76.

    Article  Google Scholar 

  50. Shriver-Lake LC, Golden J, Bracaglia L, Ligler FS. Simultaneous assay for ten bacteria and toxins in spiked clinical samples using a microflow cytometer. Anal Bioanal Chem. 2013;405(16):5611–4.

    Article  Google Scholar 

  51. Hashemi N, Erickson JS, Golden JP, Ligler FS. Optofluidic characterization of marine algae using a microflow cytometer. Biomicrofluidics. 2011;5(3):032009.

    Article  Google Scholar 

  52. Vashist SK, Luong JHT. Handbook of immunoassay technologies: approaches, performances, and applications. London: Academic Press; 2018.

    Google Scholar 

  53. Li J, Macdonald J. Multiplexed lateral flow biosensors: technological advances for radically improving point-of-care diagnoses. Biosens Bioelectron. 2016;83:177–92.

    Article  Google Scholar 

  54. Li J, Macdonald J. Multiplex lateral flow detection and binary encoding enables a molecular colorimetric 7-segment display. Lab Chip. 2016;16(2):242–5.

    Article  Google Scholar 

  55. Song S, Liu N, Zhao Z, Njumbe Ediage E, Wu S, Sun C, et al. Multiplex lateral flow immunoassay for mycotoxin determination. Anal Chem. 2014;86(10):4995–5001.

    Article  Google Scholar 

  56. Taranova N, Berlina A, Zherdev A, Dzantiev BJB. ‘Traffic light’immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosens Bioelectron. 2015;63:255–61.

    Article  Google Scholar 

  57. Lafleur LK, Bishop JD, Heiniger EK, Gallagher RP, Wheeler MD, Kauffman P, et al. A rapid, instrument-free, sample-to-result nucleic acid amplification test. Lab Chip. 2016;16(19):3777–87.

    Article  Google Scholar 

  58. Mao X, Baloda M, Gurung AS, Lin Y, Liu G. Multiplex electrochemical immunoassay using gold nanoparticle probes and immunochromatographic strips. Electrochem Commun. 2008;10(10):1636–40.

    Article  Google Scholar 

  59. Mao X, Wang W, Du T-E. Rapid quantitative immunochromatographic strip for multiple proteins test. Sens Actuators B: Chemical. 2013;186:315–20.

    Article  Google Scholar 

  60. Triage MeterPro. 2018. https://www.quidel.com/immunoassays/triage-test-kits/triage-meterpro

  61. Ahmed S, Bui MP, Abbas A. Paper-based chemical and biological sensors: engineering aspects. Biosens Bioelectron. 2016;77:249–63.

    Article  Google Scholar 

  62. Rolland JP, Mourey DA. Paper as a novel material platform for devices. MRS Bull. 2013;38(4):299–305.

    Article  Google Scholar 

  63. Yang Y, Noviana E, Nguyen MP, Geiss BJ, Dandy DS, Henry CS. Paper-based microfluidic devices: emerging themes and applications. Anal Chem. 2017;89(1):71–91.

    Article  Google Scholar 

  64. Vella SJ, Beattie P, Cademartiri R, Laromaine A, Martinez AW, Phillips ST, et al. Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal Chem. 2012;84(6):2883–91.

    Article  Google Scholar 

  65. Pollock NR, Rolland JP, Kumar S, Beattie PD, Jain S, Noubary F, et al. A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing. Sci Transl Med. 2012;4(152):152ra29.

    Article  Google Scholar 

  66. Dungchai W, Chailapakul O, Henry CS. Electrochemical detection for paper-based microfluidics. Anal Chem. 2009;81(14):5821–6.

    Article  Google Scholar 

  67. Ge L, Yan J, Song X, Yan M, Ge S, Yu J. Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials. 2012;33(4):1024–31.

    Article  Google Scholar 

  68. Li X, Liu X. A microfluidic paper-based origami nanobiosensor for label-free, ultrasensitive immunoassays. Adv Healthc Mater. 2016;5(11):1326–35.

    Article  Google Scholar 

  69. Li W, Li L, Ge S, Song X, Ge L, Yan M, et al. Multiplex electrochemical origami immunodevice based on cuboid silver-paper electrode and metal ions tagged nanoporous silver–chitosan. Biosens Bioelectron. 2014;56:167–73.

    Article  Google Scholar 

  70. Wu Y, Xue P, Hui KM, Kang Y. A paper-based microfluidic electrochemical immunodevice integrated with amplification-by-polymerization for the ultrasensitive multiplexed detection of cancer biomarkers. Biosens Bioelectron. 2014;52:180–7.

    Article  Google Scholar 

  71. Wu Y, Xue P, Kang Y, Hui KM. Paper-based microfluidic electrochemical immunodevice integrated with nanobioprobes onto graphene film for ultrasensitive multiplexed detection of cancer biomarkers. Anal Chem. 2013;85(18):8661–8.

    Article  Google Scholar 

  72. Zang D, Ge L, Yan M, Song X, Yu J. Electrochemical immunoassay on a 3D microfluidic paper-based device. Chem Commun. 2012;48(39):4683–5.

    Article  Google Scholar 

  73. Vashist SK, Lam E, Hrapovic S, Male KB, Luong JHT. Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chem Rev. 2014;114(21):11083–130.

    Article  Google Scholar 

  74. Ling MM, Ricks C, Lea P. Multiplexing molecular diagnostics and immunoassays using emerging microarray technologies. Expert Rev Mol Diagn. 2007;7(1):87–98.

    Article  Google Scholar 

  75. Chandra PE, Sokolove J, Hipp BG, Lindstrom TM, Elder JT, Reveille JD, et al. Novel multiplex technology for diagnostic characterization of rheumatoid arthritis. Arthritis Res Ther. 2011;13(3):R102.

    Article  Google Scholar 

  76. Kadimisetty K, Malla S, Sardesai NP, Joshi AA, Faria RC, Lee NH, et al. Automated multiplexed ECL Immunoarrays for cancer biomarker proteins. Anal Chem. 2015;87(8):4472–8.

    Article  Google Scholar 

  77. Chen P, Chung MT, McHugh W, Nidetz R, Li Y, Fu J, et al. Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays. ACS Nano. 2015;9(4):4173–81.

    Article  Google Scholar 

  78. Masson JF. Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sens. 2017;2(1):16–30.

    Article  Google Scholar 

  79. Acimovic SS, Ortega MA, Sanz V, Berthelot J, Garcia-Cordero JL, Renger J, et al. LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum. Nano Lett. 2014;14(5):2636–41.

    Article  Google Scholar 

  80. Schumacher S, Nestler J, Otto T, Wegener M, Ehrentreich-Forster E, Michel D, et al. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. Lab Chip. 2012;12(3):464–73.

    Article  Google Scholar 

  81. Otieno BA, Krause CE, Jones AL, Kremer RB, Rusling JF. Cancer diagnostics via ultrasensitive multiplexed detection of parathyroid hormone-related peptides with a microfluidic immunoarray. Anal Chem. 2016;88(18):9269–75.

    Article  Google Scholar 

  82. Wilson MS, Nie W. Multiplex measurement of seven tumor markers using an electrochemical protein chip. Anal Chem. 2006;78(18):6476–83.

    Article  Google Scholar 

  83. Wan Y, Su Y, Zhu X, Liu G, Fan C. Development of electrochemical immunosensors towards point of care diagnostics. Biosens Bioelectron. 2013;47:1–11.

    Article  Google Scholar 

  84. Díaz-González M, Muñoz-Berbel X, Jiménez-Jorquera C, Baldi A, Fernández-Sánchez C. Diagnostics using multiplexed electrochemical readout devices. Electroanalysis. 2014;26(6):1154–70.

    Article  Google Scholar 

  85. Ghindilis AL, Smith MW, Schwarzkopf KR, Roth KM, Peyvan K, Munro SB, et al. CombiMatrix oligonucleotide arrays: genotyping and gene expression assays employing electrochemical detection. Biosens Bioelectron. 2007;22(9–10):1853–60.

    Article  Google Scholar 

  86. Roth KM, Peyvan K, Schwarzkopf KR, Ghindilis A. Electrochemical detection of short DNA oligomer hybridization using the CombiMatrix ElectraSense microarray reader. Electroanalysis. 2006;18(19–20):1982–8.

    Article  Google Scholar 

  87. Karle M, Vashist SK, Zengerle R, von Stetten F. Microfluidic solutions enabling continuous processing and monitoring of biological samples: a review. Anal Chim Acta. 2016;929:1–22.

    Article  Google Scholar 

  88. Duncan PN, Ahrar S, Hui EE. Scaling of pneumatic digital logic circuits. Lab Chip. 2015;15(5):1360–5.

    Article  Google Scholar 

  89. Araci IE, Brisk P. Recent developments in microfluidic large scale integration. Curr Opin Biotechnol. 2014;25:60–8.

    Article  Google Scholar 

  90. Shao H, Chung J, Lee K, Balaj L, Min C, Carter BS, et al. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun. 2015;6:6999.

    Article  Google Scholar 

  91. Chin CD, Laksanasopin T, Cheung YK, Steinmiller D, Linder V, Parsa H, et al. Microfluidics-based diagnostics of infectious diseases in the developing world. Nat Med. 2011;17(8):1015–9.

    Article  Google Scholar 

  92. Lafleur L, Stevens D, McKenzie K, Ramachandran S, Spicar-Mihalic P, Singhal M, et al. Progress toward multiplexed sample-to-result detection in low resource settings using microfluidic immunoassay cards. Lab Chip. 2012;12(6):1119–27.

    Article  Google Scholar 

  93. Kling A, Chatelle C, Armbrecht L, Qelibari E, Kieninger J, Dincer C, et al. Multianalyte antibiotic detection on an electrochemical microfluidic platform. Anal Chem. 2016;88(20):10036–43.

    Article  Google Scholar 

  94. Vashist SK, Luong JHT. Bioanalytical requirements and regulatory guidelines for immunoassays. In: Handbook of immunoassay technologies. London: Elsevier; 2018. p. 81–95.

    Chapter  Google Scholar 

  95. Vashist SK, Luong JHT. Trends in in vitro diagnostics and mobile healthcare. Biotechnol Adv. 2016;34(3):137–8.

    Article  Google Scholar 

  96. Contreras-Naranjo JC, Wei Q, Ozcan A. Mobile phone-based microscopy, sensing, and diagnostics. IEEE J Sel Top Quantum Electron. 2016;22(3):1–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vashist, S.K. (2019). Multiplex Immunoassays. In: Point-of-Care Technologies Enabling Next-Generation Healthcare Monitoring and Management. Springer, Cham. https://doi.org/10.1007/978-3-030-11416-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11416-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11415-2

  • Online ISBN: 978-3-030-11416-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics