Skip to main content

Salinity: A Major Agricultural Problem—Causes, Impacts on Crop Productivity and Management Strategies

  • Chapter
  • First Online:
Plant Abiotic Stress Tolerance

Abstract

Salinity along with drought is one of the leading abiotic stresses in agriculture which foster growth retardation, physiological abnormalities, and lower production output of field crops throughout the world. Salt stress remains a major growth-limitation factor mostly in arid and semiarid zones. The problem emerges when the concentration of Na+, Cl, and ions of other allied salts exceeds in soil than standard levels, which primarily disturbs the osmotic functions and then consequently alters several metabolic activities required for normal growth and development of plants. Besides natural occurrences in some soils, excessive irrigation, climate change, and agricultural intensification are some of the contributing factors towards soil salinity. Although different plants differ in sensitivity to soil salinity, most of their growth and yield traits are negatively influenced as a result of disorders in respiration, photosynthesis, mineral uptake, and oxidative stress. Decreased crop productivity due to salinity—as expected to elevate in the coming decades—would pose severe threats to global food security in the future if the challenge is not properly directed. Sustainable agronomic practices, deployment of molecular and functional genomic approaches can boost our understanding of salinity stress and create salt-tolerant traits in major field crops which could potentially contribute to production and yield enhancement under elevated saline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahanger MA, Agarwal RM (2017) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiol Biochem 115:449–460

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Alyemeni MN, Ahanger MA, Egamberdieva D, Wijaya L, Alam P (2018) Salicylic acid (SA) induced alterations in growth, biochemical attributes and antioxidant enzyme activity in Faba Bean (Vicia faba L.) seedlings under NaCl toxicity. Russian J Plant Physiol 65(1):104–114

    Article  CAS  Google Scholar 

  • Ahmadi FI, Karimi K, Struik PC (2018) Effect of exogenous application of methyl jasmonate on physiological and biochemical characteristics of Brassica napus L. cv. Talaye under salinity stress. S Afr J Bot 115:5–11

    Article  CAS  Google Scholar 

  • Ajouri A, Asgedom H, Becker M (2004) Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. J Plant Nutr Soil Sci 167:630–636

    Article  Google Scholar 

  • Akhtar SS, Andersen MN, Liu F (2015a) Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agric Water Manag 158:61–68

    Article  Google Scholar 

  • Akhtar SS, Andersen MN, Naveed M, Zahir ZA, Liu F (2015b) Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Funct Plant Biol 42:770–781

    Article  CAS  PubMed  Google Scholar 

  • Allel D, Ben-Amar A, Abdelly C (2018) Leaf photosynthesis, chlorophyll fluorescence and ion content of barley (Hordeum vulgare) in response to salinity. J Plant Nutr 41:497–508

    Article  CAS  Google Scholar 

  • Athar HR, Ashraf M (2009) Strategies for crop improvement against salinity and drought stress: an overview. In: Ashraf M, Ozturk M, Athar HR (eds) Salinity and water stress. Springer, New York, pp 1–16

    Google Scholar 

  • Atieno J, Li Y, Langridge P, Dowling K, Brien C, Berger B, Sutton T (2017) Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. Sci Rep 7(1):1300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ayars E, Christe EW, Hornbuckle JW (2006) Controlled drainage for improved water management in arid regions irrigated agriculture. Agric Water Manag 86:128–139

    Article  Google Scholar 

  • Azhar AH (2010) Impact of subsurface drainage on soil salinity in Pakistan. J Anim Plant Sci 20:94–98

    Google Scholar 

  • Bacha H, Tekaya M, Drine S, Guasmi F, Touil L, Enneb H, Ferchichi A (2017) Impact of salt stress on morpho-physiological and biochemical parameters of Solanum lycopersicum cv. Microtom leaves. S Afr J Bot 108:364–369

    Article  CAS  Google Scholar 

  • Bajwa AA, Farooq M, Nawaz A (2018) Seed priming with sorghum extracts and benzyl aminopurine improves the tolerance against salt stress in wheat (Triticum aestivum L.). Physiol Mol Biol Plants 24:239-249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benidire L, Lahrouni M, El Khalloufi F, Göttfert M, Oufdou K (2017) Effects of rhizobium leguminosarum inoculation on growth, nitrogen uptake and mineral assimilation in Vicia faba plants under salinity stress. J Agric Sci Technol 19:889–901

    Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768

    Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2003) Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell Tissue Organ Cult 73:101–115

    Article  CAS  Google Scholar 

  • Bruce TJ, Matthes MC, Napier JA, Pickett JA (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  • Cha-Um S, Kirdmanee C (2009) Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two maize cultivars. Pak J Bot 41:87–98

    CAS  Google Scholar 

  • Daliakopoulos IN, Tsanis IK, Koutroulis A, Kourgialas NN, Varouchakis AE, Karatzas GP, Ritsema CJ (2016) The threat of soil salinity: a European scale review. Sci Total Environ 573:727–739

    Article  CAS  PubMed  Google Scholar 

  • Del Cerro P, Pérez-Montaño F, Gil-Serrano A, López-Baena FJ, Megías M, Hungria M, Ollero FJ (2017) The Rhizobium tropici CIAT 899 NodD2 protein regulates the production of Nod factors under salt stress in a flavonoid-independent manner. Sci Rep 7:46712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan X, Pedroli B, Liu G, Liu Q, Liu H, Shu L (2012) Soil salinity development in the yellow river delta in relation to groundwater dynamics. Land Degrad Dev 23:175–189

    Article  Google Scholar 

  • FAOSTAT (2018) Food and Agricultural Organization Statistical database, Crop production. http://faostat3.fao.org/download /Q/QC/ E (accessed on March 20, 2018)

    Google Scholar 

  • Fathi A, Zahedi M, Torabian S, Khoshgoftar A (2017) Response of wheat genotypes to foliar spray of ZnO and Fe2O3 nanoparticles under salt stress. J Plant Nutr 40:1376–1385

    Article  CAS  Google Scholar 

  • Gholami M, Mokhtarian F, Baninasab B (2015) Seed halopriming improves the germination performance of black seed (Nigella sativa) under salinity stress conditions. J Crop Sci Biotechnol 18:21–26

    Article  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1

    Article  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Gul H, Kinza S, Shinwari ZK, Hamayun M (2017) Effect of selenium on the biochemistry of Zea mays under salt stress. Pak J Bot 49:25–32

    Google Scholar 

  • Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int 2016:6284547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hakim MA, Juraimi AS, Begum M, Hanafi MM, Ismail MR, Selamat A (2010) Effect of salt stress on germination and early seedling growth of rice (Oryza sativa L.). Afr J Biotechnol 9:1911–1918

    Article  CAS  Google Scholar 

  • Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanson B, May D (2004) Effect of subsurface drip irrigation on processing tomato yield, water table depth, soil salinity, and profitability. Agric Water Manag 68:1–17

    Article  Google Scholar 

  • Hassini I, Martinez-Ballesta MC, Boughanmi N, Moreno DA, Carvajal M (2017) Improvement of broccoli sprouts (Brassica oleracea L. var. italica) growth and quality by KCl seed priming and methyl jasmonate under salinity stress. Sci Hortic 226:141–151

    Article  CAS  Google Scholar 

  • Hou M, Zhu L, Jin Q (2016) Surface drainage and mulching drip-irrigated tomatoes reduces soil salinity and improves fruit yield. PLoS One 11:e0154799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hussain S, Khan F, Cao W, Wu L, Geng M (2016) Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Front Plant Sci 7:439

    PubMed  PubMed Central  Google Scholar 

  • Hussein M, Embiale A, Husen A, Aref IM, Iqbal M (2017) Salinity-induced modulation of plant growth and photosynthetic parameters in faba bean (Vicia faba) cultivars. Pak J Bot 49:867–877

    CAS  Google Scholar 

  • Islam F, Yasmeen T, Ali S, Ali B, Farooq MA, Gill RA (2015) Priming-induced antioxidative responses in two wheat cultivars under saline stress. Acta Physiol Plant 37:153

    Article  CAS  Google Scholar 

  • Islam F, Yasmeen T, Arif MS, Ali S, Ali B, Hameed S, Zhou W (2016) Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regul 80:23–36

    Article  CAS  Google Scholar 

  • Islam F, Farooq MA, Gill RA, Wang J, Yang C, Ali B, Zhou W (2017) 2, 4-D attenuates salinity-induced toxicity by mediating anatomical changes, antioxidant capacity and cation transporters in the roots of rice cultivars. Sci Rep 7:10443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ismail AM, Horie T (2017) Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annu Rev Plant Biol 68:405–434

    Article  CAS  PubMed  Google Scholar 

  • Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A (2018) Molecular interaction of 1-aminocyclopropane-1-carboxylate deaminase (ACCD)-producing endophytic Streptomyces sp. GMKU 336 towards salt-stress resistance of Oryza sativa L. cv. KDML105. Sci Rep 8(1):1950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35:1381–1396

    Article  Google Scholar 

  • Kaashyap M, Ford R, Kudapa H, Jain M, Edwards D, Varshney R, Mantri N (2018) Differential regulation of genes involved in root morphogenesis and cell wall modification is associated with salinity tolerance in chickpea. Sci Rep 8:4855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaya MD, Okçu G, Atak M, Cıkılı Y, Kolsarıcı Ö (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24:291–295

    Article  CAS  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Polat T, Tuna AL (2017) The combined effects of nitric oxide and thiourea on plant growth and mineral nutrition of salt-stressed plants of two maize cultivars with differential salt tolerance. J Plant Nutr. https://doi.org/10.1080/01904167.2016.1270314

    Article  CAS  Google Scholar 

  • Khaliq A, Aslam F, Matloob A, Hussain S, Geng M, Wahid A, Rehman H (2015) Seed priming with selenium: consequences for emergence, seedling growth, and biochemical attributes of rice. Biol Trace Elem Res 166:236–244

    Article  CAS  PubMed  Google Scholar 

  • Khataar M, Mohhamadi MH, Shabani F (2018) Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat. Sci Rep 8:2679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konuşkan Ö, Gözübenli H, Atiş İ, Atak M (2017) Effects of salinity stress on emergence and seedling growth parameters of some maize genotypes (Zea mays L.). Turk J Agric Food Sci Technol 5:1668–1672

    Google Scholar 

  • Krishnamurthy SL, Gautam RK, Sharma PC, Sharma DK (2016) Effect of different salt stresses on agro-morphological traits and utilisation of salt stress indices for reproductive stage salt tolerance in rice. Field Crops Res 190:26–33

    Article  Google Scholar 

  • Läuchli A, Grattan SR (2007) Plant growth and development under salinity stress. In: Jenks MA, Hasegawa PM, Mohan Jain S (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, New York, pp 1–32

    Google Scholar 

  • Li R, Shi F, Fukuda K, Yang Y (2010) Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa (Medicago sativa L.). Soil Sci Plant Nutr 56:725–733

    Article  CAS  Google Scholar 

  • Luo Y, Reid R, Freese D, Li C, Watkins J, Shi H, Song BH (2017) Salt tolerance response revealed by RNA-Seq in a diploid halophytic wild relative of sweet potato. Sci Rep 7:9624

    Article  PubMed  PubMed Central  Google Scholar 

  • Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3:30

    Article  Google Scholar 

  • Mahmood A, Turgay OC, Farooq M, Hayat R (2016) Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 92(8):pii:fiw112

    Article  PubMed  CAS  Google Scholar 

  • Martinez V, Nieves-Cordones M, Lopez-Delacalle M, Rodenas R, Mestre TC, Garcia-Sanchez F, Rivero RM (2018) Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules 23:535

    Article  PubMed Central  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Memon JA, Jogezai G, Hussain A, Alizai MQ, Baloch MA (2017) Rehabilitating traditional irrigation systems: assessing popular support for Karez rehabilitation in Balochistan, Pakistan. Hum Ecol 45:265–275

    Article  Google Scholar 

  • Muhammad Z, Hussain F, Rehmanullah, Majeed A (2015) Effect of halopriming on the induction of NaCl salt tolerance in different wheat genotypes. Pak J Bot 47: 1613-1620

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of Salinity Tolerance. Ann Rev Plant Biol 59:651-681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops—what is the cost? New Phytol 208:668–673

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Reig M, Sanchis-Ibor C, Palau-Salvador G, García-Mollá M, Avellá-Reus L (2017) Institutional and management implications of drip irrigation introduction in collective irrigation systems in Spain. Agric Water Manag 187:164–172

    Article  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22:4056–4075

    Article  CAS  Google Scholar 

  • Perveen S, Shahbaz M, Ashraf M (2010) Regulation in gas exchange and quantum yield of photosystem II (PSII) in salt-stressed and non-stressed wheat plants raised from seed treated with triacontanol. Pak J Bot 42:3073–3081

    CAS  Google Scholar 

  • Qadir M, Oster JD (2004) Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci Total Environ 323:1–19

    Article  CAS  PubMed  Google Scholar 

  • Radanielson AM, Angeles O, Li T, Ismail AM, Gaydon DS (2018) Describing the physiological responses of different rice genotypes to salt stress using sigmoid and piecewise linear functions. Field Crops Res 220:46–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasool S, Hameed A, Azooz MM, Siddiqi TO, Ahmad P (2013) Salt stress: causes, types and responses of plants. Ecophysiology and responses of plants under salt stress. Springer, New York, pp 1–24

    Book  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Rietz DN, Haynes RJ (2003) Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35:845–854

    Article  CAS  Google Scholar 

  • Rivero RM, Mestre TC, Mittler RON, Rubio F, Garcia-Sanchez F, Martinez V (2014) The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ 37:1059–1073

    Article  CAS  PubMed  Google Scholar 

  • Rubio MB, Hermosa R, Vicente R, Gómez-Acosta FA, Morcuende R, Monte E, Bettiol W (2017) The combination of Trichoderma harzianum and chemical fertilization leads to the deregulation of phytohormone networking, preventing the adaptive responses of tomato plants to salt stress. Front Plant Sci 8:294

    Google Scholar 

  • Rudrapur S, Mundinamani SM, Kiresur VR, Hosamani SB, Manjunatha MV, Dolli SS (2017) Impact of sprinkler irrigation system on doubling Farmers’ income and water use efficiency of tur in northern Karnataka. In: Agricultural Economics Research Review

    Google Scholar 

  • Salah SM, Yajing G, Dongdong C, Jie L, Aamir N, Qijuan H, Jin H (2015) Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Sci Rep 5:14278

    Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34(10):635–648

    Article  CAS  PubMed  Google Scholar 

  • Sandhu D, Cornacchione MV, Ferreira JF, Suarez DL (2017) Variable salinity responses of 12 alfalfa genotypes and comparative expression analyses of salt-response genes. Sci Rep 7:42958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarabi B, Bolandnazar S, Ghaderi N, Ghashghaie J (2017) Genotypic differences in physiological and biochemical responses to salinity stress in melon (Cucumis melo L.) plants: prospects for selection of salt tolerant landraces. Plant Physiol Biochem 119:294–311

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S, Maiti TK (2018) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169:20–32

    Article  CAS  PubMed  Google Scholar 

  • Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible?. Trends Plant Sci 21:329–340

    Article  CAS  PubMed  Google Scholar 

  • Shahzad R, Khan AL, Bilal S, Waqas M, Kang SM, Lee IJ (2017) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot 136:68–77

    Article  CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Jha P, Jha PN (2015) The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. J Plant Physiol 184:57–67

    Article  CAS  PubMed  Google Scholar 

  • Singh VK, Mishra A, Haque I, Jha B (2016) A novel transcription factor-like gene SbSDR1 acts as a molecular switch and confers salt and osmotic endurance to transgenic tobacco. Sci Rep 6:31686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smedema LK, Shiati K (2002) Irrigation and salinity: a perspective review of the salinity hazards of irrigation development in the arid zone. Irrig Drain Syst 16:161–174

    Article  Google Scholar 

  • Soda N, Sharan A, Gupta BK, Singla-Pareek SL, Pareek A (2016) Evidence for nuclear interaction of a cytoskeleton protein (OsIFL) with metallothionein and its role in salinity stress tolerance. Sci Rep 6:34762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song GC, Choi HK, Kim YS, Choi JS, Ryu CM (2017) Seed defense biopriming with bacterial cyclodipeptides triggers immunity in cucumber and pepper. Sci Rep 7:14209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tabassum T, Farooq M, Ahmad R, Zohaib A, Wahid A (2017) Seed priming and transgenerational drought memory improves tolerance against salt stress in bread wheat. Plant Physiol Biochem 118:362–369

    Article  CAS  PubMed  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58

    Article  CAS  Google Scholar 

  • Tiwari P, Goel A (2017) An overview of impact of subsurface drainage project studies on salinity management in developing countries. Appl Water Sci 7:569–580

    Article  CAS  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. In: Methods in Enzymology. Academic Press, pp 419–438

    Google Scholar 

  • Upadhyay SK, Singh DP (2015) Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol 17:288–293

    Article  CAS  PubMed  Google Scholar 

  • Valipour M (2014) Drainage, waterlogging, and salinity. Arch Agron Soil Sci 60:1625–1640

    Article  Google Scholar 

  • Varier A, Vari AK, Dadlani M (2010) The subcellular basis of seed priming. Curr Sci 99:450–456

    CAS  Google Scholar 

  • Wang Q, Dodd IC, Belimov AA, Jiang F (2016) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Func Plant Biol 43:161–172

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trend Plant Sci 14:1–4

    Article  CAS  Google Scholar 

  • Yang A, Akhtar SS, Iqbal S, Qi Z, Alandia G, Saddiq MS, Jacobsen SE (2018) Saponin seed priming improves salt tolerance in quinoa. J Agron Crop Sci 204:31–39

    Article  CAS  Google Scholar 

  • Yeilaghi H, Arzani A, Ghaderian M, Fotovat R, Feizi M, Pourdad SS (2012) Effect of salinity on seed oil content and fatty acid composition of safflower (Carthamus tinctorius L.) genotypes. Food Chem 130:618–625

    Article  CAS  Google Scholar 

  • Zhang ZJ, Li HZ, Zhou WJ, Takeuchi Y, Yoneyama K (2006) Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regul 49:27–34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majeed, A., Muhammad, Z. (2019). Salinity: A Major Agricultural Problem—Causes, Impacts on Crop Productivity and Management Strategies. In: Hasanuzzaman, M., Hakeem, K., Nahar, K., Alharby, H. (eds) Plant Abiotic Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-030-06118-0_3

Download citation

Publish with us

Policies and ethics