Skip to main content

Functionalized Antibacterial Nanoparticles for Controlling Biofilm and Intracellular Infections

  • Chapter
  • First Online:
Surface Modification of Nanoparticles for Targeted Drug Delivery

Abstract

The intracellular and biofilm associated bacterial infections are difficult to treat due to the resistance potential of the organisms toward commonly used antimicrobial agents. Nanoparticles have promising future in the development of new therapeutics because of their easy functionalization and unique mode of action. This book chapter consists of three parts. The first two parts explain the limitations in the treatment of intracellular and biofilm infections in the current scenario. The last part describes how nanoparticles can be employed to tackle the problems of drug resistance and the latest research studies conducted regarding the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zaki, N. M., & Hafez, M. M. (2012). Enhanced antibacterial effect of ceftriaxone sodium-loaded chitosan nanoparticles against intracellular Salmonellatyphimurium. AAPS PharmSciTech, 13, 411–421. https://doi.org/10.1208/s12249-012-9758-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mu, H., Tang, J., Liu, Q., Sun, C., Wang, T., & Duan, J. (2016). Potent antibacterial nanoparticles against biofilm and intracellular bacteria. Scientific Reports, 6, 18877. https://doi.org/10.1038/srep18877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xie, S., Yang, F., Tao, Y., Chen, D., Qu, W., Huang, L., Liu, Z., Pan, Y., & Yuan, Z. (2017). Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella. Scientific Reports, 7, 41104. https://doi.org/10.1038/srep41104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Birmingham, C. L., Canadien, V., Gouin, E., Troy, E. B., Yoshimori, T., Cossart, P., Higgins, D. E., & Brumell, J. H. (2007). Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy, 3, 442–451. https://doi.org/10.4161/auto.4450.

    Article  CAS  PubMed  Google Scholar 

  5. Ogawa, M., Yoshimori, T., Suzuki, T., Sagara, H., Mizushima, N., & Sasakawa, C. (2005). Escape of intracellular Shigella from autophagy. Science, 307, 727–731. https://doi.org/10.1126/science.1106036.

    Article  CAS  PubMed  Google Scholar 

  6. Butchar, J. P., Cremer, T. J., Clay, C. D., Gavrilin, M. A., Wewers, M. D., Marsh, C. B., Schlesinger, L. S., & Tridandapani, S. (2008). Microarray analysis of human monocytes infected with Francisella tularensis identifies new targets of host response subversion. PLoS One, 3, 2924. https://doi.org/10.1371/journal.pone.0002924.

    Article  Google Scholar 

  7. Cullinane, M., Gong, L., Li, X., Lazar-Adler, N., Tra, T., Wolvetang, E., Prescott, M., Boyce, J. D., Devenish, R. J., & Adler, B. (2008). Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines. Autophagy, 4, 744–753. https://doi.org/10.4161/auto.6246.

    Article  CAS  PubMed  Google Scholar 

  8. Eswarappa, S. M., Negi, V. D., Chakraborty, S., Sagar, B. K. C., & Chakravortty, D. (2010). Division of the Salmonella-containing vacuole and depletion of acidic lysosomes in Salmonella-infected host cells are novel strategies of Salmonella enterica to avoid lysosomes. Infection and Immunity, 78, 68–79. https://doi.org/10.1128/IAI.00668-09.

    Article  CAS  PubMed  Google Scholar 

  9. Aparna, V., Shiva, M., Biswas, R., & Jayakumar, R. (2018). Biological macromolecules based targeted nanodrug delivery systems for the treatment of intracellular infections. International Journal of Biological Macromolecules, 110, 2–6. https://doi.org/10.1016/j.ijbiomac.2018.01.030.

    Article  CAS  PubMed  Google Scholar 

  10. Van Schaik, E. J., Chen, C., Mertens, K., Weber, M. M., & Samuel, J. E. (2013). Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nature Reviews. Microbiology, 11, 561–573. https://doi.org/10.1038/nrmicro3049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yasir, M., Pachikara, N. D., Bao, X., Pan, Z., & Fan, H. (2011). Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles. Infection and Immunity, 79, 4019–4028. https://doi.org/10.1128/IAI.05308-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, H., Liang, F. X., & Kong, X. P. (2008). Characteristics of the phagocytic cup induced by uropathogenic Escherichia coli. The Journal of Histochemistry and Cytochemistry, 56, 597–604. https://doi.org/10.1369/jhc.2008.950923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wolska, K., Bednarz, B., & Jakubczak, A. (2003). Adherence of Pseudomonas aeruginosa to human buccal epithelial cells. Acta Microbiologica Polonica, 52, 419–423.

    PubMed  Google Scholar 

  14. Bucior, I., Tran, C., & Engel, J. (2014). Assessing Pseudomonas virulence using host cells. Methods in Molecular Biology, 1149, 741–755. https://doi.org/10.1007/978-1-4939-0473-0_57.

    Article  PubMed  Google Scholar 

  15. Singh, S. K. (2017). Staphylococcus aureus intracellular survival: A closer look in the process. Virulence, 8, 1506–1507. https://doi.org/10.1080/21505594.2017.1384896.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kapral, F. A., & Shayegani, M. G. (1959). Intracellular survival of Staphylococci. The Journal of Experimental Medicine, 110, 123–138. https://doi.org/10.1084/jem.110.1.123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gresham, H. D., Lowrance, J. H., Caver, T. E., Wilson, B. S., Cheung, A. L., & Lindberg, F. P. (2000). Survival of Staphylococcus aureus inside neutrophils contributes to infection. Journal of Immunology, 164, 3713–3722. https://doi.org/10.4049/jimmunol.164.7.3713.

    Article  CAS  Google Scholar 

  18. Wilson, J. W., Schurr, M. J., LeBlanc, C. L., Ramamurthy, R., Buchanan, K. L., & Nickerson, C. A. (2002). Mechanisms of bacterial pathogenicity. Postgraduate Medical Journal, 78, 216–224. https://doi.org/10.1136/pmj.78.918.216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zychlinsky, A., Prevost, M. C., & Sansonetti, P. J. (1992). Shigella flexneri induces apoptosis in infected macrophages. Nature, 358, 167–169. https://doi.org/10.1038/358167a0.

    Article  CAS  PubMed  Google Scholar 

  20. Celli, J. (2008). Intracellular localization of Brucella abortus and Francisella tularensis in primary murine macrophages. Methods in Molecular Biology, 431, 133–145. https://doi.org/10.1007/978-1-60327-032-8_11.

    Article  CAS  PubMed  Google Scholar 

  21. Silverman, D. J., & Bond, S. B. (1984). Infection of human vascular endothelial cells by Rickettsia rickettsii. The Journal of Infectious Diseases, 149, 201–206.

    Article  CAS  Google Scholar 

  22. Alpuche-Aranda, C. M., Racoosin, E. L., Swanson, J. A., & Miller, S. I. (1994). Salmonella stimulate macrophage macropinocytosis and persist within spacious phagosomes. The Journal of Experimental Medicine, 179, 601–608. https://doi.org/10.1084/jem.179.2.601.

    Article  CAS  Google Scholar 

  23. Awuh, J. A., & Flo, T. H. (2017). Molecular basis of mycobacterial survival in macrophages. Cellular and Molecular Life Sciences, 74, 1625–1648. https://doi.org/10.1007/s00018-016-2422-8.

    Article  CAS  PubMed  Google Scholar 

  24. Dermine, J. F., & Desjardins, M. (1999). Survival of intracellular pathogens within macrophages. Protoplasma, 210, 11–24. https://doi.org/10.1007/BF01314950.

    Article  Google Scholar 

  25. Ghigo, E., Colombo, M. I., & Heinzen, R. A. (2012). The Coxiella burnetii parasitophorous vacuole. Advances in Experimental Medicine and Biology, 984, 141–169. https://doi.org/10.1007/978-94-007-4315-1_8.

    Article  CAS  PubMed  Google Scholar 

  26. Heuer, D., Lipinski, A. R., Machuy, N., Karlas, A., Wehrens, A., Siedler, F., Brinkmann, V., & Meyer, T. F. (2009). Chlamydia causes fragmentation of the golgi compartment to ensure reproduction. Nature, 457, 731–735. https://doi.org/10.1038/nature07578.

    Article  CAS  PubMed  Google Scholar 

  27. Ellington, J. K., Reilly, S. S., Ramp, W. K., Smeltzer, M. S., Kellam, J. F., & Hudson, M. C. (1999). Mechanisms of Staphylococcus aureus invasion of cultured osteoblasts. Microbial Pathogenesis, 26, 317–323. https://doi.org/10.1006/mpat.1999.0272.

    Article  CAS  PubMed  Google Scholar 

  28. Lindsay, D., & von Holy, A. (2006). Bacterial biofilms within the clinical setting: What healthcare professionals should know. The Journal of Hospital Infection, 64, 313–325. https://doi.org/10.1016/j.jhin.2006.06.028.

    Article  CAS  PubMed  Google Scholar 

  29. Giaouris, E., Heir, E., Hébraud, M., Chorianopoulos, N., Langsrud, S., Møretrø, T., Habimana, O., Desvaux, M., Renier, S., & Nychas, G. J. (2014). Attachment and biofilm formation by foodborne bacteria in meat processing environments: Causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Science, 97, 289–309. https://doi.org/10.1016/j.meatsci.2013.05.023.

    Article  Google Scholar 

  30. Dufour, D., Leung, V., & Lévesque, C. M. (2010). Bacterial biofilm: Structure, function, and antimicrobial resistance. Endodontic Topics, 22, 2–16. https://doi.org/10.1111/j.1601-1546.2012.00277.x.

    Article  Google Scholar 

  31. Høiby, N., Ciofu, O., & Bjarnsholt, T. (2010). Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiology, 5, 1663–1674. https://doi.org/10.2217/fmb.10.125.

    Article  PubMed  Google Scholar 

  32. Gómez, M. I., & Prince, A. (2007). Opportunistic infections in lung disease: Pseudomonasinfections in cystic fibrosis. Current Opinion in Pharmacology, 7, 244–251. https://doi.org/10.1016/j.coph.2006.12.005.

    Article  CAS  PubMed  Google Scholar 

  33. Nickel, J. C., & Costerton, J. W. (1993). Bacterial localization in antibiotic-refractory chronic bacterial prostatitis. The Prostate, 23, 107–114. https://doi.org/10.1002/pros.2990230204.

    Article  CAS  PubMed  Google Scholar 

  34. Abidi, S. H., Sherwani, S. K., Siddiqui, T. R., Bashir, A., & Kazmi, S. U. (2013). Drug resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolated from contact lenses in Karachi-Pakistan. BMC Ophthalmology, 13, 57. https://doi.org/10.1186/1471-2415-13-57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bragonzi, A., Farulla, I., Paroni, M., Twomey, K. B., Pirone, L., Lorè, N. I., Bianconi, I., Dalmastri, C., Ryan, R. P., & Bevivino, A. (2012). Modelling co-infection of the cystic fibrosis lung by Pseudomonas aeruginosa and Burkholderia cenocepacia reveals influences on biofilm formation and host response. PLoS One, 7, 52330. https://doi.org/10.1371/journal.pone.0052330.

    Article  CAS  Google Scholar 

  36. Hellström, J. (1938). The significance of staphylococci in the development and treatment of renal and ureteral stones. British Journal of Urology, 10, 348–372. https://doi.org/10.1111/j.1464-410X.1938.tb10342.x.

    Article  Google Scholar 

  37. Cierny, G., III, & Mader, J. T. (1984). Adult chronic osteomyelitis. Orthopedics, 7, 1557–1564.

    CAS  PubMed  Google Scholar 

  38. Rohde, H., Burandt, E. C., Siemssen, N., Frommelt, L., Burdelski, C., Wurster, S., Scherpe, S., Davies, A. P., Harris, L. G., Horstkotte, M. A., Knobloch, J. K. M., Ragunath, C., Kaplan, J. B., & Mack, D. (2007). Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials, 28, 1711–1720. https://doi.org/10.1016/j.biomaterials.2006.11.046.

    Article  CAS  PubMed  Google Scholar 

  39. Santos, A. P. A., Watanabe, E., & de Andrade, D. (2011). Biofilm on artificial pacemaker: Fiction or reality? Arquivos Brasileiros de Cardiologia, 97, 113–120. https://doi.org/10.1590/S0066-782X2011001400018.

    Article  CAS  Google Scholar 

  40. Fux, C. A., Quigley, M., Worel, A. M., Post, C., Zimmerli, S., Ehrlich, G., & Veeh, R. H. (2006). Biofilm-related infections of cerebrospinal fluid shunts. Clinical Microbiology and Infection, 12, 331–337. https://doi.org/10.1111/j.1469-0691.2006.01361.x.

    Article  CAS  PubMed  Google Scholar 

  41. Murakami, M., Nishi, Y., Seto, K., Kamashita, Y., & Nagaoka, E. (2015). Dry mouth and denture plaque microflora in complete denture and palatal obturator prosthesis wearers. Gerodontology, 32, 188–194. https://doi.org/10.1111/ger.12073.

    Article  PubMed  Google Scholar 

  42. Tollefson, D. F., Bandyk, D. F., Kaebnick, H. W., Seabrook, G. R., & Towne, J. B. (1987). Surface biofilm disruption: Enhanced recovery of microorganisms from vascular prostheses. Archives of Surgery, 122, 38–43. https://doi.org/10.1001/archsurg.1987.01400130044006.

    Article  CAS  PubMed  Google Scholar 

  43. Higashi, J., & Sullam, P. (2006). Staphylococcus aureus biofilms. In J. L. Pace, M. E. Rupp, & R. G. Finch (Eds.), Biofilms, infection, and antimicrobial therapy (pp. 81–100). Boca Raton: Taylor & Francis.

    Google Scholar 

  44. Rieger, U. M., Mesina, J., Kalbermatten, D. F., Haug, M., Frey, H. P., Pico, R., Frei, R., Pierer, G., Luscher, N. J., & Trampuz, A. (2013). Bacterial biofilms and capsular contracture in patients with breast implants. The British Journal of Surgery, 100, 768–774. https://doi.org/10.1002/bjs.9084.

    Article  CAS  PubMed  Google Scholar 

  45. Lamont, R. J., & Jenkinson, H. F. (1998). Life below the gum line: Pathogenic mechanisms of Porphyromonas gingivalis. Microbiology and Molecular Biology Reviews, 62, 1244–1263.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. El-Ganiny, A. M., Shaker, G. H., Aboelazm, A. A., & El-Dash, H. A. (2017). Prevention of bacterial biofilm formation on soft contact lenses using natural compounds. Journal of Ophthalmic Inflammation and Infection, 7, 11. https://doi.org/10.1186/s12348-017-0129-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. DePas, W. H., Syed, A. K., Sifuentes, M., Lee, J. S., Warshaw, D., Saggar, V., Csankovszki, G., Boles, B. R., & Chapman, M. R. (2014). Biofilm formation protects Escherichia coli against killing by Caenorhabditis elegans and Myxococcus xanthus. Applied and Environmental Microbiology, 80, 7079–7087. https://doi.org/10.1128/AEM.02464-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kwiecinska-Piróg, J., Bogiel, T., Skowron, K., Wieckowska, E., & Gospodarek, E. (2014). Proteus mirabilis biofilm—Qualitative and quantitative colorimetric methods-based evaluation. Brazilian Journal of Microbiology, 45, 1415–1421. https://doi.org/10.1590/S1517-83822014000400037.

    Article  Google Scholar 

  49. Wu, H., Moser, C., Wang, H. Z., Høiby, N., & Song, Z. J. (2015). Strategies for combating bacterial biofilm infections. International Journal of Oral Science, 7, 1–7. https://doi.org/10.1038/ijos.2014.65.

    Article  CAS  PubMed  Google Scholar 

  50. Massing, U., Ingebrigtsen, S. G., Škalko-Basnet, N., & Holsæter, A. M. (2017). Dual centrifugation—A novel “in-vial” liposome processing technique. In Liposomes. doi:https://doi.org/10.5772/intechopen.68523.

    Google Scholar 

  51. Bozzuto, G., & Molinari, A. (2015). Liposomes as nanomedical devices. International Journal of Nanomedicine, 10, 975–999. https://doi.org/10.2147/IJN.S68861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Salem, I. I., Flasher, D. L., & Düzgüneş, N. (2005). Liposome-encapsulated antibiotics. Methods in Enzymology, 391, 261–291. https://doi.org/10.1016/S0076-6879(05)91015-X.

    Article  CAS  PubMed  Google Scholar 

  53. Gulati, M., Grover, M., Singh, S., & Singh, M. (1998). Lipophilic drug derivatives in liposomes. International Journal of Pharmaceutics, 165, 129–168. https://doi.org/10.1016/S0378-5173(98)00006-4.

    Article  CAS  Google Scholar 

  54. Laouini, A., Jaafar-Maalej, C., Limayem-Blouza, I., Sfar, S., Charcosset, C., & Fessi, H. (2012). Preparation, characterization and applications of liposomes: State of the art. Journal of Colloid Science and Biotechnology, 1, 147–168. https://doi.org/10.1166/jcsb.2012.1020.

    Article  CAS  Google Scholar 

  55. Hatakeyama, H., Akita, H., Ito, E., Hayashi, Y., Oishi, M., Nagasaki, Y., Danev, R., Nagayama, K., Kaji, N., Kikuchi, H., Baba, Y., & Harashima, H. (2011). Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid. Biomaterials, 32, 4306–4316. https://doi.org/10.1016/j.biomaterials.2011.02.045.

    Article  CAS  PubMed  Google Scholar 

  56. Schroeder, A., Levins, C. G., Cortez, C., Langer, R., & Anderson, D. G. (2010). Lipid-based nanotherapeutics for siRNA delivery. Journal of Internal Medicine, 267, 9–21. https://doi.org/10.1111/j.1365-2796.2009.02189.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lv, H., Zhang, S., Wang, B., Cui, S., & Yan, J. (2006). Toxicity of cationic lipids and cationic polymers in gene delivery. Journal of Controlled Release, 114, 100–109. https://doi.org/10.1016/j.jconrel.2006.04.014.

    Article  CAS  PubMed  Google Scholar 

  58. Quan, J.-S., Jiang, H.-L., Yu, J.-H., Guo, D.-D., Arote, R., Choi, Y.-J., & Cho, C.-S. (2008). Polymeric nanoparticles for oral delivery of protein drugs. Nanoparticles New Research, 373–386.

    Google Scholar 

  59. Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces, 75, 1–18. https://doi.org/10.1016/j.colsurfb.2009.09.001.

    Article  CAS  PubMed  Google Scholar 

  60. Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., & Rudzinski, W. E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 70, 1–20. https://doi.org/10.1016/S0168-3659(00)00339-4.

    Article  CAS  PubMed  Google Scholar 

  61. Bhatia, S. (2016). Natural polymer drug delivery systems: Nanoparticles, plants, and algae. Cham: Springer. https://doi.org/10.1007/978-3-319-41129-3.

    Book  Google Scholar 

  62. Amiji, M. M. (2007). Polymeric nanoparticles. Nanotechnology in Cancer Therapy, 215–230.

    Google Scholar 

  63. Alexis, F., Pridgen, E., Molnar, L. K., & Farokhzad, O. C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular Pharmaceutics, 505–515. https://doi.org/10.1021/mp800051m.

    Article  CAS  Google Scholar 

  64. Smart, S. K., Cassady, A. I., Lu, G. Q., & Martin, D. J. (2006). The biocompatibility of carbon nanotubes. Carbon N. Y., 44, 1034–1047. https://doi.org/10.1016/j.carbon.2005.10.011.

    Article  CAS  Google Scholar 

  65. Yakobson, B. I., & Avouris, P. (2001). Mechanical properties of carbon nanotubes. Carbon Nanotubes, 327, 287–327. https://doi.org/10.1007/3-540-39947-X.

    Article  Google Scholar 

  66. Endo, M., Strano, M., & Ajayan, P. (2008). Potential applications of carbon nanotubes. Carbon Nanotubes, 62, 13–61. https://doi.org/10.1007/978-3-540-72865-8_2.

    Article  Google Scholar 

  67. Szfki, M. T. A., Nanotube, C., & Seminar, L. (2005). Purification of carbon nanotubes What do we have to purify? Carbon N. Y., 46, 2003–2025. https://doi.org/10.1016/j.carbon.2008.09.009.

    Article  CAS  Google Scholar 

  68. McEuen, P. L. (2000). Single-wall carbon nanotubes. Physics World, 13, 31–36. https://doi.org/10.1088/2058-7058/13/6/26.

    Article  CAS  Google Scholar 

  69. Ong, Y. T., Ahmad, A. L., Hussein, S., Zein, S., & Tan, S. H. (2010). A review on carbon nanotubes in an environmental protection and green engineering perspective. Carbon Nanotubes, 27, 227–242.

    CAS  Google Scholar 

  70. Hou, P. X., Liu, C., & Cheng, H. M. (2008). Purification of carbon nanotubes. Carbon N. Y., 46, 2003–2025. https://doi.org/10.1016/j.carbon.2008.09.009.

    Article  CAS  Google Scholar 

  71. Bradley, J. S., Schmid, G., Talapin, D. V., Shevchenko, E. V., & Weller, H. (2003). Syntheses and characterizations: 3.2 synthesis of metal nanoparticles. Nanoparticles, 185–238. https://doi.org/10.1002/3527602399.ch3b.

  72. Koksharov, Y. A. (2009). Magnetism of nanoparticles: Effects of size, shape, and interactions. Magnetic Nanoparticles, 197–254. https://doi.org/10.1002/9783527627561.ch6.

  73. Nikiforov, V. N., & Filinova, E. Y. (2009). Biomedical applications of magnetic nanoparticles. Magnetic Nanoparticles, 393–455. https://doi.org/10.1002/9783527627561.ch10.

  74. Bolden, N. W., Rangari, V. K., Jeelani, S., Boyoglu, S., & Singh, S. R. (2013). Synthesis and evaluation of magnetic nanoparticles for biomedical applications. Journal of Nanoparticles, 2013, 1–9. https://doi.org/10.1155/2013/370812.

    Article  CAS  Google Scholar 

  75. Schrand, A. M., Rahman, M. F., Hussain, S. M., Schlager, J. J., Smith, D. A., & Syed, A. F. (2010). Metal-based nanoparticles and their toxicity assessment. Wiley interdisciplinary Reviews: Nanomedicineand Nanobiotechnology, 2, 544–568. https://doi.org/10.1002/wnan.103.

    Article  CAS  Google Scholar 

  76. Parvathi, V. D., Rajagopal, K., Pandya, J., Lincoln, B., & Sumitha, R. (2015). Synthesis, characterisation and in vitro toxicity assessment of nano iron. International Journal of Nanoparticles, 8, 302. https://doi.org/10.1504/IJNP.2015.073733.

    Article  CAS  Google Scholar 

  77. Van den Boorn, J. G., Daßler, J., Coch, C., Schlee, M., & Hartmann, G. (2013). Exosomes as nucleic acid nanocarriers. Advanced Drug Delivery Reviews, 65, 331–335. https://doi.org/10.1016/j.addr.2012.06.011.

    Article  CAS  PubMed  Google Scholar 

  78. Mendes, L. P., Pan, J., & Torchilin, V. P. (2017). Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules, 22, 1401. https://doi.org/10.3390/molecules22091401.

    Article  CAS  Google Scholar 

  79. Oberoi, H. S., Nukolova, N. V., Kabanov, A. V., & Bronich, T. K. (2013). Nanocarriers for delivery of platinum anticancer drugs. Advanced Drug Delivery Reviews, 65, 1667–1685. https://doi.org/10.1016/j.addr.2013.09.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dufès, C., Uchegbu, I. F., & Schätzlein, A. G. (2005). Dendrimers in gene delivery. Advanced Drug Delivery Reviews, 57, 2177–2202. https://doi.org/10.1016/j.addr.2005.09.017.

    Article  CAS  PubMed  Google Scholar 

  81. Biswas, S., & Torchilin, V. P. (2013). Dendrimers for siRNA delivery. Pharmaceuticals, 6, 161–183. https://doi.org/10.3390/ph6020161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, X., Rocchi, P., & Peng, L. (2012). Dendrimers as non-viral vectors for siRNA delivery. New Journal of Chemistry, 36, 256–263. https://doi.org/10.1039/C1NJ20408D.

    Article  CAS  Google Scholar 

  83. Probst, C. E., Zrazhevskiy, P., Bagalkot, V., & Gao, X. (2013). Quantum dots as a platform for nanoparticle drug delivery vehicle design. Advanced Drug Delivery Reviews, 65, 703–718. https://doi.org/10.1016/j.addr.2012.09.036.

    Article  CAS  PubMed  Google Scholar 

  84. Qi, L., & Gao, X. (2008). Emerging application of quantum dots for drug delivery and therapy. Expert Opinion on Drug Delivery, 5, 263–267. https://doi.org/10.1517/17425247.5.3.263.

    Article  CAS  PubMed  Google Scholar 

  85. Mattoussi, H., Palui, G., & Bin Na, H. (2012). Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Advanced Drug Delivery Reviews, 64, 138–166. https://doi.org/10.1016/j.addr.2011.09.011.

    Article  CAS  PubMed  Google Scholar 

  86. Smith, A. M., Duan, H., Mohs, A. M., & Nie, S. (2008). Bioconjugated quantum dots for in vivo molecular and cellular imaging. Advanced Drug Delivery Reviews, 60, 1226–1240. https://doi.org/10.1016/j.addr.2008.03.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zrazhevskiy, P., Sena, M., & Gao, X. (2010). Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chemical Society Reviews, 39, 4326. https://doi.org/10.1039/b915139g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tiwari, G., Tiwari, R., & Rai, A. K. (2010). Cyclodextrins in delivery systems: Applications. Journal of Pharmacy & Bioallied Sciences, 2, 72–79. https://doi.org/10.4103/0975-7406.67003.

    Article  CAS  Google Scholar 

  89. Uekama, K. (1999). Cyclodextrins in drug delivery system. Advanced Drug Delivery Reviews, 36, 1–2. https://doi.org/10.1016/S0169-409X(98)00051-9.

    Article  CAS  Google Scholar 

  90. Challa, R., Ahuja, A., Ali, J., & Khar, R. K. (2005). Cyclodextrins in drug delivery: An updated review. AAPS PharmSciTech, 6, 329–357. https://doi.org/10.1208/pt060243.

    Article  Google Scholar 

  91. Mamaeva, V., Sahlgren, C., & Lindén, M. (2013). Mesoporous silica nanoparticles in medicine-Recent advances. Advanced Drug Delivery Reviews, 65, 689–702. https://doi.org/10.1016/j.addr.2012.07.018.

    Article  CAS  PubMed  Google Scholar 

  92. Slowing, I. I., Vivero-Escoto, J. L., Wu, C.-W., & Lin, V. S.-Y. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug Delivery Reviews, 60, 1278–1288. https://doi.org/10.1016/j.addr.2008.03.012.

    Article  CAS  PubMed  Google Scholar 

  93. Bharti, C., Gulati, N., Nagaich, U., & Pal, A. (2015). Mesoporous silica nanoparticles in target drug delivery system: A review. International Journal of Pharmaceutical Investigation, 5, 124. https://doi.org/10.4103/2230-973X.160844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tang, F., Li, L., & Chen, D. (2012). Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Advanced Materials, 24, 1504–1534. https://doi.org/10.1002/adma.201104763.

    Article  CAS  PubMed  Google Scholar 

  95. Slowing, I. I., Trewyn, B. G., Giri, S., & Lin, V. S.-Y. (2007). Mesoporous silica nanoparticles for drug delivery and biosensing applications. Advanced Functional Materials, 17, 1225–1236. https://doi.org/10.1002/adfm.200601191.

    Article  CAS  Google Scholar 

  96. Tréguer-Delapierre, M., Majimel, J., Mornet, S., Duguet, E., & Ravaine, S. (2008). Synthesis of non-spherical gold nanoparticles. Gold Bulletin, 41, 195–207. https://doi.org/10.1007/BF03216597.

    Article  Google Scholar 

  97. Li, Y., Schluesener, H. J., & Xu, S. (2010). Gold nanoparticle-based biosensors. Gold Bulletin, 43, 29–41. https://doi.org/10.1007/BF03214964.

    Article  Google Scholar 

  98. Online, V. A., Fragouli, D., Ruffilli, R., & Athanassiou, A. (2014). Localised synthesis of gold nanoparticles in anisotropic alginate. RSC Advances, 4, 20449–20453. https://doi.org/10.1039/b000000x.

    Article  Google Scholar 

  99. Manson, J., Kumar, D., Meenan, B. J., & Dixon, D. (2011). Polyethylene glycol functionalized gold nanoparticles: The influence of capping density on stability in various media. Gold Bulletin, 44, 99–105. https://doi.org/10.1007/s13404-011-0015-8.

    Article  CAS  Google Scholar 

  100. Chithrani, B. D., Ghazani, A. A., & Chan, W. C. W. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6, 662–668. https://doi.org/10.1021/nl052396o.

    Article  CAS  PubMed  Google Scholar 

  101. Ramasamy, M., & Lee, J. (2016). Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. BioMed Research International, 2016. https://doi.org/10.1155/2016/1851242.

    Article  Google Scholar 

  102. Aparna, V., Melge, A. R., Rajan, V. K., Biswas, R., Jayakumar, R., & Gopi Mohan, C. (2018). Carboxymethylated ɩ-carrageenan conjugated amphotericin B loaded gelatin nanoparticles for treating intracellular Candida glabratainfections. International Journal of Biological Macromolecules, 110, 140–149. https://doi.org/10.1016/j.ijbiomac.2017.11.126.

    Article  CAS  PubMed  Google Scholar 

  103. Sandhya, M., Aparna, V., Maneesha, S. K., Raja, B., Jayakumar, R., & Sathianarayanan, S. (2018). Amphotericin B loaded sulfonated chitosan nanoparticles for targeting macrophages to treat intracellular Candida glabrata infections. International Journal of Biological Macromolecules, 110, 133–139. https://doi.org/10.1016/j.ijbiomac.2018.01.028.

    Article  CAS  PubMed  Google Scholar 

  104. Elbi, S., Nimal, T. R., Rajan, V. K., Baranwal, G., Biswas, R., Jayakumar, R., & Sathianarayanan, S. (2017). Fucoidan coated ciprofloxacin loaded chitosan nanoparticles for the treatment of intracellular and biofilm infections of Salmonella. Colloids and Surfaces B: Biointerfaces, 160, 40–47. https://doi.org/10.1016/j.colsurfb.2017.09.003.

    Article  CAS  Google Scholar 

  105. Maya, S., Indulekha, S., Sukhithasri, V., Smitha, K. T., Nair, S. V., Jayakumar, R., & Biswas, R. (2012). Efficacy of tetracycline encapsulated O-carboxymethyl chitosan nanoparticles against intracellular infections of Staphylococcus aureus. International Journal of Biological Macromolecules, 51, 392–399. https://doi.org/10.1016/j.ijbiomac.2012.06.009.

    Article  CAS  PubMed  Google Scholar 

  106. Kiruthika, V., Maya, S., Suresh, M. K., Anil Kumar, V., Jayakumar, R., & Biswas, R. (2015). Comparative efficacy of chloramphenicol loaded chondroitin sulfate and dextran sulfate nanoparticles to treat intracellular Salmonella infections. Colloids and Surfaces B: Biointerfaces, 127, 33–40. https://doi.org/10.1016/j.colsurfb.2015.01.012.

    Article  CAS  PubMed  Google Scholar 

  107. Toti, U. S., Guru, B. R., Hali, M., McPharlin, C. M., Wykes, S. M., Panyam, J., & Whittum-Hudson, J. A. (2011). Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials, 32, 6606–6613. https://doi.org/10.1016/j.biomaterials.2011.05.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Anisimova, Y. V., Gelperina, S. I., a Peloquin, C., & Heifets, L. B. (2000). Nanoparticles as antituberculosis drugs carriers: Effect on activity against Mycobacterium tuberculosis in human monocyte-derived macrophages. Yao Hsueh Hsueh Pao [Acta Pharmaceutica Sinica], 2, 165–171. https://doi.org/10.1023/a:1010061013365.

    Article  CAS  Google Scholar 

  109. Kisich, K. O., Gelperina, S., Higgins, M. P., Wilson, S., Shipulo, E., Oganesyan, E., & Heifets, L. (2007). Encapsulation of moxifloxacin within poly(butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. International Journal of Pharmaceutics, 345, 154–162. https://doi.org/10.1016/j.ijpharm.2007.05.062.

    Article  CAS  PubMed  Google Scholar 

  110. Saraogi, G. K., Gupta, P., Gupta, U. D., Jain, N. K., & Agrawal, G. P. (2010). Gelatin nanocarriers as potential vectors for effective management of tuberculosis. International Journal of Pharmaceutics, 385, 143–149. https://doi.org/10.1016/j.ijpharm.2009.10.004.

    Article  CAS  PubMed  Google Scholar 

  111. Clemens, D. L., Lee, B. Y., Xue, M., Thomas, C. R., Meng, H., Ferris, D., Nel, A. E., Zink, J. I., & Horwitz, M. A. (2012). Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrobial Agents and Chemotherapy, 56, 2535–2545. https://doi.org/10.1128/AAC.06049-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hwang, A. A., Lee, B. Y., Clemens, D. L., Dillon, B. J., Zink, J. I., & Horwitz, M. A. (2015). Tuberculosis: pH responsive isoniazid loaded nanoparticles markedly improve tuberculosis treatment in mice (Small 38/2015). Small, 11, 5065. https://doi.org/10.1002/smll.201570235.

    Article  PubMed  Google Scholar 

  113. Abed, N., Saïd-Hassane, F., Zouhiri, F., Mougin, J., Nicolas, V., Desmaële, D., Gref, R., & Couvreur, P. (2015). An efficient system for intracellular delivery of β-lactam antibiotics to overcome bacterial resistance. Scientific Reports, 5, 13500. https://doi.org/10.1038/srep13500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Smitha, K. T., Nisha, N., Maya, S., Biswas, R., & Jayakumar, R. (2015). Delivery of rifampicin-chitin nanoparticles into the intracellular compartment of polymorphonuclear leukocytes. International Journal of Biological Macromolecules, 74, 36–43. https://doi.org/10.1016/j.ijbiomac.2014.11.006.

    Article  CAS  PubMed  Google Scholar 

  115. Monteiro, D. R., Gorup, L. F., Takamiya, A. S., Ruvollo, A. C., Camargo, E. R., & Barbosa, D. B. (2009). The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. International Journal of Antimicrobial Agents, 34, 103–110. https://doi.org/10.1016/j.ijantimicag.2009.01.017.

    Article  CAS  PubMed  Google Scholar 

  116. Oldenburg, S. J. (2017). Silver nanoparticles: Properties and applications. Sigma-Aldrich, Sigma-Aldrick.

    Google Scholar 

  117. Wagener, M. (2006). Antimicrobial coatings: Nanocomposite coatings can reduce infections within a medical environment. Polymers Paint Colour Journal, 610. http://dialog.proquest.com/professional/docview/773702398?accountid=156179.

  118. Yu, Q., Li, J., Zhang, Y., Wang, Y., Liu, L., & Li, M. (2016). Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Scientific Reports, 6, 26667. https://doi.org/10.1038/srep26667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chamundeeswari, M., Sobhana, S. S. L., Jacob, J. P., Kumar, M. G., Devi, M. P., Sastry, T. P., & Mandal, A. B. (2010). Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity. Biotechnology and Applied Biochemistry, 55, 29–35. https://doi.org/10.1042/BA20090198.

    Article  CAS  PubMed  Google Scholar 

  120. Brown, A. N., Smith, K., Samuels, T. A., Lu, J., Obare, S. O., & Scott, M. E. (2012). Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Applied and Environmental Microbiology, 78, 2768–2774. https://doi.org/10.1128/AEM.06513-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lackner, P., Beer, R., Broessner, G., Helbok, R., Galiano, K., Pleifer, C., Pfausler, B., Brenneis, C., Huck, C., Engelhardt, K., Obwegeser, A. A., & Schmutzhard, E. (2008). Efficacy of silver nanoparticles-impregnated external ventricular drain catheters in patients with acute occlusive hydrocephalus. Neurocritical Care, 8, 360–365. https://doi.org/10.1007/s12028-008-9071-1.

    Article  PubMed  Google Scholar 

  122. Shi, Z., Neoh, K. G., Kang, E. T., & Wang, W. (2006). Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials, 27, 2440–2449. https://doi.org/10.1016/j.biomaterials.2005.11.036.

    Article  CAS  PubMed  Google Scholar 

  123. Vahedi, M., Hosseini-Jazani, N., Yousefi, S., & Ghahremani, M. (2017). Evaluation of anti-bacterial effects of nickel nanoparticles on biofilm production by Staphylococcus epidermidis. Iranian Journal of Microbiology, 9, 160–168.

    PubMed  PubMed Central  Google Scholar 

  124. Mubarak Ali, D., Arunkumar, J., Pooja, P., Subramanian, G., Thajuddin, N., & Alharbi, N. S. (2015). Synthesis and characterization of biocompatibility of tenorite nanoparticles and potential property against biofilm formation. Saudi Pharmaceutical Society, 23, 421–428. https://doi.org/10.1016/j.jsps.2014.11.007.

    Article  Google Scholar 

  125. Namasivayam, S. K. R., Christo, B. B., Arasu, S. M. K., Kumar, K. A. M., & Deepak, K. (2013). Anti biofilm effect of biogenic silver nanoparticles coated medical devices against biofilm of clinical isolate of Staphylococcus aureus. Global Journal of Medical Research, 13, 25–30.

    Google Scholar 

  126. Fazly Bazzaz, B. S., Khameneh, B., Zarei, H., & Golmohammadzadeh, S. (2016). Antibacterial efficacy of rifampin loaded solid lipid nanoparticles against Staphylococcus epidermidis biofilm. Microbial Pathogenesis, 93, 137–144. https://doi.org/10.1016/j.micpath.2015.11.031.

    Article  CAS  PubMed  Google Scholar 

  127. Hetrick, E. M., Shin, J. H., Paul, H. S., & Schoenfisch, M. H. (2009). Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials, 30, 2782–2789. https://doi.org/10.1016/j.biomaterials.2009.01.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shakibaie, M., Forootanfar, H., Golkari, Y., Mohammadi-Khorsand, T., & Shakibaie, M. R. (2015). Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. Journal of Trace Elements in Medicine and Biology, 29, 235–241. https://doi.org/10.1016/j.jtemb.2014.07.020.

    Article  CAS  PubMed  Google Scholar 

  129. Rajkumari, J., Busi, S., Vasu, A. C., & Reddy, P. (2017). Facile green synthesis of baicalein fabricated gold nanoparticles and their antibiofilm activity against Pseudomonas aeruginosa PAO1. Microbial Pathogenesis, 107, 261–269. https://doi.org/10.1016/j.micpath.2017.03.044.

    Article  CAS  PubMed  Google Scholar 

  130. Kalishwaralal, K., BarathManiKanth, S., Pandian, S. R., Deepak, V., & Gurunathan, S. (2010). Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids and Surfaces B Biointerfaces, 79, 340–344. https://doi.org/10.1016/j.colsurfb.2010.04.014\rS0927-7765(10)00217-1.

    Article  CAS  PubMed  Google Scholar 

  131. Sangani, M. H., Moghaddam, M. N., & Forghanifard, M. M. (2015). Inhibitory effect of zinc oxide nanoparticles on Pseudomonas aeruginosa biofilm formation. Nanomedicine Journal, 2, 121–128. https://doi.org/10.7508/nmj.2015.02.004.

    Article  CAS  Google Scholar 

  132. Cheow, W. S., Chang, M. W., & Hadinoto, K. (2010). Antibacterial efficacy of inhalable antibiotic-encapsulated biodegradable polymeric nanoparticles against E. coli biofilm cells. Journal of Biomedical Nanotechnology, 6, 391–403. https://doi.org/10.1166/jbn.2010.1116.

    Article  CAS  PubMed  Google Scholar 

  133. Mohankandhasamy, R., Lee, J. H., & Lee, J. (2017). Development of gold nanoparticles coated with silica containing the antibiofilm drug cinnamaldehyde and their effects on pathogenic bacteria. International Journal of Nanomedicine, 12, 2813–2828. https://doi.org/10.2147/IJN.S132784.

    Article  Google Scholar 

  134. Cheow, W. S., Chang, M. W., & Hadinoto, K. (2011). The roles of lipid in anti-biofilm efficacy of lipid-polymer hybrid nanoparticles encapsulating antibiotics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389, 158–165. https://doi.org/10.1016/j.colsurfa.2011.08.035.

    Article  CAS  Google Scholar 

  135. Shi, S., Jia, J., Xiao-kui, G., Zhao, Y., Chen, D., Guo, Y., & Zhang, X. (2016). Reduced Staphylococcus aureus biofilm formation in the presence of chitosan-coated iron oxide nanoparticles. International Journal of Nanomedicine, 11, 6499–6506. https://doi.org/10.2147/IJN.S41371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kyaw, K., Harada, A., Ichimaru, H., Kawagoe, T., Yahiro, K., Morimura, S., Ono, K., Tsutsuki, H., Sawa, T., & Niidome, T. (2017). Silver nanoparticles as potential antibiofilm agents against human pathogenic bacteria. Chemistry Letters, 46, 594–596. https://doi.org/10.1246/cl.161198.

    Article  CAS  Google Scholar 

  137. Sangani, M. H., Moghaddam, M. N., & Forghanifard, M. M. (2015). Inhibitory effect of zinc oxide nanoparticles on Pseudomonas aeruginosabiofilm formation Inhibition of biofilm formation by zinc oxide nanoparticles. Nanomedicine Journal, 2, 121–128. https://doi.org/10.7508/nmj.2015.02.004.

    Article  CAS  Google Scholar 

  138. Shrestha, A., & Kishen, A. (2014). Antibiofilm efficacy of photosensitizer-functionalized bioactive nanoparticles on multispecies biofilm. Journal of Endodontia, 40, 1604–1610. https://doi.org/10.1016/j.joen.2014.03.009.

    Article  Google Scholar 

  139. Maurer-Jones, M. A., Gunsolus, I. L., Meyer, B. M., Christenson, C. J., & Haynes, C. L. (2013). Impact of TiO2 nanoparticles on growth, biofilm formation, and flavin secretion in Shewanella oneidensis. Analytical Chemistry, 85, 5810–5818. https://doi.org/10.1021/ac400486u.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tabrez Khan, S., Ahamed, M., Al-Khedhairy, A., & Musarrat, J. (2013). Biocidal effect of copper and zinc oxide nanoparticles on human oral microbiome and biofilm formation. Materials Letters, 97, 67–70. https://doi.org/10.1016/j.matlet.2013.01.085.

    Article  CAS  Google Scholar 

  141. Bhattacharyya, P., Agarwal, B., Goswami, M., Maiti, D., Baruah, S., & Tribedi, P. (2018). Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus pneumoniae. Antonie Van Leeuwenhoek, 111, 89–99. https://doi.org/10.1007/s10482-017-0930-7.

    Article  CAS  PubMed  Google Scholar 

  142. Taylor, E. N., & Webster, T. J. (2009). The use of superparamagnetic nanoparticles for prosthetic biofilm prevention. International Journal of Nanomedicine, 4, 145–152. https://doi.org/10.2147/IJN.S5976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kumar, C. G., & Sujitha, P. (2014). Green synthesis of Kocuran-functionalized silver glyconanoparticles for use as antibiofilm coatings on silicone urethral catheters. Nanotechnology, 25, 325101. https://doi.org/10.1088/0957-4484/25/32/325101.

    Article  CAS  PubMed  Google Scholar 

  144. Berzofsky, J. A., Ahlers, J. D., Janik, J., Morris, J., Oh, S., Terabe, M., & Belyakov, I. M. (2004). Progress on new vaccine strategies against chronic viral infections. The Journal of Clinical Investigation, 114, 450–462. https://doi.org/10.1172/JCI22674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India for infrastructural support and Nanomission grant (SR/NM/NT-1033/2016 G) from the Department of Science and Technology, India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Viswanathan, A., Rangasamy, J., Biswas, R. (2019). Functionalized Antibacterial Nanoparticles for Controlling Biofilm and Intracellular Infections. In: Pathak, Y. (eds) Surface Modification of Nanoparticles for Targeted Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-030-06115-9_10

Download citation

Publish with us

Policies and ethics