Skip to main content

Thermal Energy Storage Systems

  • Chapter
  • First Online:
Advances in Sustainable Energy

Part of the book series: Lecture Notes in Energy ((LNEN,volume 70))

Abstract

One way of improving resiliency in industrial and energy-intensive infrastructures, particularly those with renewable energy production, is combining the grid with energy storage systems. Among various forms of energy, thermal energy is extensively available such as waste heat energy in manufacturing systems or solar thermal energy that can be harvested in a sustainable form. The concept behind thermal energy storage (TES) systems is to store thermal energy in a medium for a later use. TES systems can be categorized into three main sections of sensible, Latent and thermo-chemical TES systems. The poor rate of storage and release of thermal energy, lack or reliability and maturity, and limitation in storage capacity are the main drawbacks of existing TES systems, impede their real-world use in industry. This chapter provides an introduction to these TES systems and provides a summary of researchers’ efforts to overcome the challenges exist in utilizing these TES systems in industry. Furthermore, the details of potential application of TES systems are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agyenim F, Hewitt N, Eames P, Smyth M (2010a) A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 14(2):615–628

    Google Scholar 

  • Agyenim F, Eames P, Smith M (2010b) Heat transfer enhancement in medium temperature thermal storage system using a multi tube heat transfer array. Renew Energy 35:198–207

    Google Scholar 

  • Akgun M, Aydin O, Kaygusuz K (2007) Experimental study on melting/solidification characteristics of paraffin as PCM. Energy Convers Manag 48:669–678

    Google Scholar 

  • Alkan C, Sari A (2008) Fatty acid/poly (methyl methacrylate)(PMMA) blends as form-stable phase change materials for latent heat thermal energy storage. Sol Energy 82(2):118–124

    Article  Google Scholar 

  • Babaei H, Keblinski P, Khodadadi JM (2013) Improvement in thermal conductivity of paraffin by adding high aspect-ratio carbon-based nano-fillers. Phys Lett A 377(19):1358–1361

    Article  Google Scholar 

  • Bahraseman H, Languri E, East J (2017) Fast charging of thermal energy storage systems enabled by phase change materials mixed with expanded graphite. Int J Heat Mass Transf 109:1052–1058

    Article  Google Scholar 

  • Balasubramanian G, Ghommem M, Hajj MR et al (2010) Modeling of thermochemical energy storage by salt hydrates. Int J Heat Mass Transfer 53:5700–5706

    Article  Google Scholar 

  • Bales C (2006) Solar energy research center (SERC). Chemical and sorption heat storage. In: Proceedings of DANVAK seminar, DANVAK seminar (solar heating systems–combisystems–heat storage)

    Google Scholar 

  • Cabeza LF, Castell A, Barreneche C, De Gracia A, Fernández AI (2011) Materials used as PCM in thermal energy storage in buildings: a review. Renew Sustain Energy Rev 15(3):1675–1695

    Article  Google Scholar 

  • Cabeza LF, Sole C, Castell A, Oro E, Gil A (2012) Review of solar thermal storage techniques and associated heat transfer technologies. Proc IEEE 100(2):525–538

    Article  Google Scholar 

  • Fan LW, Fang X, Wang X, Zeng Y, Xiao YQ, Yu ZT, Xu X, Hu YC, Cen KF (2013) Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl Energy 31(110):163–172

    Article  Google Scholar 

  • Fang X, Fan LW, Ding Q, Wang X, Yao XL, Hou JF, Yu ZT, Cheng GH, Hu YC, Cen KF (2013) Increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets. Energy Fuels 27(7):4041–4047

    Article  Google Scholar 

  • Hadorn J-C (ed) (2005) Thermal energy storage for solar and low energy buildings—state of the art. Servei de Publicacions de la Universitat de Lleida

    Google Scholar 

  • Kato Y (2007) Chemical energy conversion technologies for efficient energy use. In: Paksoy H (ed) Thermal energy storage for sustainable energy consumption. Springer, pp 377–391

    Google Scholar 

  • Kato Y, Takahashi R, Sekiguchi T et al (2009) Study on medium-temperature chemical heat storage using mixed hydroxides. Int J Refrigeration 32:661–666

    Article  Google Scholar 

  • Kawasaki H, Watanabe T, Kanzawa A (1999) Proposal of a chemical heat pump with paraldehyde depolymerization for cooling system. Appl Therm Eng 19:133–143

    Article  Google Scholar 

  • Kim S, Drzal LT (2009) High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol Energy Mater Sol Cells 93(1):136–142

    Article  Google Scholar 

  • Kumar A, Shukla SK (2015) A review on thermal energy storage unit for solar thermal power plant application. Energy Procedia 74:462–469

    Article  Google Scholar 

  • Lacroix M (1993) Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube. Int J Heat Mass Transf 36:2083–2092

    Google Scholar 

  • Languri EM, Aigbotsua CO, Alvarado JL (2013a) Latent thermal energy storage system using phase change material in corrugated enclosures. Appl Therm Eng 50(1):1008–1014

    Article  Google Scholar 

  • Languri E, Aigbotsua C, Alvarado J (2013b) Latent thermal energy storage system using phase change material in corrugated enclosures. Appl Therm Eng 50:1008–1014

    Article  Google Scholar 

  • Li M, Wu Z (2012) A review of intercalation composite phase change material: preparation, structure and properties. Renew Sustain Energy Rev 16(4):2094–2101

    Article  Google Scholar 

  • Liu Z, Zou R, Lin Z, Gui X, Chen R, Lin J, Shang Y, Cao A (2013) Tailoring carbon nanotube density for modulating electro-to-heat conversion in phase change composites. Nano Lett 13(9):4028–4035

    Article  Google Scholar 

  • Murali G, Mayilsamy K (2014–2015) An overview of PCM usage to enhance solar water heating system. Int J Chem Tech Res 7(4):1802–1807

    Google Scholar 

  • Posern K, Kaps C (2008) Humidity controlled calorimetric investigation of the hydration of MgSO4 hydrates. J Therm Anal Calorim 92:905–909

    Article  Google Scholar 

  • Sarı A, Karaipekli A (2012) Fatty acid esters-based composite phase change materials for thermal energy storage in buildings. Appl Therm Eng 31(37):208–216

    Article  Google Scholar 

  • Seeniraj RV, Velraj R, Narasimhan NL (2002) Thermal analysis of a finned-tube LHTS module for a solar dynamic power system. Heat Mass Transf 38:409–417

    Google Scholar 

  • Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345

    Article  Google Scholar 

  • Stach H, Mugele J, Janchen J et al (2005) Influence of cycle temperatures on the thermochemical heat storage densities in the systems water/microporous and water/mesoporous adsorbents. Adsorp J Int Adsorp Soc 11:393–404

    Article  Google Scholar 

  • Teng TP, Yu CC (2012) Characteristics of phase-change materials containing oxide nano-additives for thermal storage. Nanoscale Res Lett 7(1):1

    Article  MathSciNet  Google Scholar 

  • van Essen VM, Zondag HA, Gores JC et al (2009) Characterization of MgSO4 hydrate for thermochemical seasonal heat storage. J Solar Energy Eng Trans ASME 131:041014

    Article  Google Scholar 

  • Visscher K, Veldhuis JBJ, Oonk HAJ et al (2004) Compacte chemische seizoensopslag van zonnewarmte ECN-C-04-074

    Google Scholar 

  • Visscher K, Veldhuis JBJ (2005) Comparison of candidate materials for seasonal storage of solar heat through dynamic simulation of building and renewable energy system. In: Proceedings of the 9th international building performance simulation association

    Google Scholar 

  • Wang Y, Xia TD, Feng HX, Zhang H (2011) Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent heat thermal energy storage. Renew Energy 36(6):1814–1820

    Article  Google Scholar 

  • Wang C, Feng L, Yang H, Xin G, Li W, Zheng J, Tian W, Li X (2012) Graphene oxide stabilized polyethylene glycol for heat storage. Phys Chem Chem Phys 14(38):13233–13238

    Article  Google Scholar 

  • Wang Y, Tang B, Zhang S (2013) Single-walled carbon nanotube/phase change material composites: sunlight-driven, reversible, form-stable phase transitions for solar thermal energy storage. Adv Funct Mater 23(35):4354–4360

    Article  Google Scholar 

  • Wu S, Zhu D, Zhang X, Huang J (2010) Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM). Energy Fuels 24(3):1894–1898

    Article  Google Scholar 

  • Yang X, Yuan Y, Zhang N, Cao X, Liu C (2014) Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage. Sol Energy 31(99):259–266

    Article  Google Scholar 

  • Zhang Y, Faghri A (1996) Heat transfer enhancement in latent heat thermal energy storage system by using an external radial finned tube. J Enhanc Heat Transf 3:119–127

    Google Scholar 

  • Zhang Z, Zhang N, Peng J, Fang X, Gao X, Fang Y (2012a) Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl Energy 91(1):426–431

    Article  Google Scholar 

  • Zhang S, Tao Q, Wang Z, Zhang Z (2012b) Controlled heat release of new thermal storage materials: the case of polyethylene glycol intercalated into graphene oxide paper. J Mater Chem 22(38):20166–20169

    Article  Google Scholar 

  • Zhao J, Alvarado JL, Languri EM, Wang C (2012) Numerical simulation of thermal performance of a high aspect ratio thermal energy storage device. In: ASME 2012 international mechanical engineering congress and exposition 9 November 2012. American Society of Mechanical Engineers, pp 1815–1821

    Google Scholar 

  • Zhong Y, Li S, Wei X, Liu Z, Guo Q, Shi J, Liu L (2010) Heat transfer enhancement of paraffin wax using compressed expanded natural graphite for thermal energy storage. Carbon 48(1):300–304

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ethan Mohseni Languri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Languri, E.M., Cunningham, G. (2019). Thermal Energy Storage Systems. In: Vasel, A., Ting, DK. (eds) Advances in Sustainable Energy. Lecture Notes in Energy, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-05636-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05636-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05635-3

  • Online ISBN: 978-3-030-05636-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics