Skip to main content

Advertisement

Log in

Influence of Cycle Temperatures on the Thermochemical Heat Storage Densities in the Systems Water/Microporous and Water/Mesoporous Adsorbents

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The adsorption equilibrium of water on microporous adsorbents (zeolites of NaA-, NaY- and NaX-type as well as their ion exchanged forms) and on mesoporous adsorbents (different silica gels and composite material i.e. silica gel + salt hydrate) has been studied experimentally and theoretically. Using the Dubinin theory of pore filling the characteristic curves of the adsorption systems and other relevant dependences such as isotherms, isobars, isosteres and the curve of the differential heat of adsorption were calculated. For all systems investigated the adsorption were calculated. Aads and the desorption potential Ades of the closed heat storage system were estimated. These values define the working range of the adsorption/desorption cycle and allow to calculate the specific heat storage density Δ hsp. On the basis of Δ hsp the different adsorbents were compared in order to select the optimal porous storage material for a given application.

The presented experimental and theoretical investigations show that the adsorption systems water-zeolite and water-composites are promising working pairs for thermochemical heat storage processes for hot tap water supply and space heating of single family dwellings. The advantage of the water-composite system is the low desorption temperature (solar energy) the main shortcoming the low temperature lift. The advantage of the water zeolite system is the high temperature lift, the shortcoming are the relative high desorption temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aristov, Y.I., et al.,”Selective Water Sorbents for Multiple Applications. 1. Ca Cl2 Confined in Mesopores of Silica Gel: Sorption Properties,” React. Kinet. Cat. Letters, 59, 325–333 (1996).

    CAS  Google Scholar 

  • Aristov, Y.I., et al., “Selctive Water Sorbents for Multiple Applications. 1. Ca Cl2 Confined in Micropores of Silica Gel: Sorption Properties,” React. Kinet. Cat. Letters, 59 (1996) 335–342.

    CAS  Google Scholar 

  • Dubinin, M.M., “Theory of Physical Adsorption of Gases and Vapors and Adsorption Properties of Adsorbents of Various Natures and Porous Structures,” Bull Division of Chem Soc., 1072–1078 (1960).

  • Dubinin, M.M., “Porenstruktur von Adsorbentien und Katalysatoren,” Sitzungsbericht der Ad W, 1966.

  • Dubinin, M.M. et al., “Adsorption Equilibrium of Water on Na X Zeolite,” Coll. Czech. Chem. Common, 31, 406–414 (1966).

  • Dubinin, M.M. et al., “Adsorption in Micropores,” J. Coll. Interf. Sci., 23, 487–499 (1967).

    Article  CAS  Google Scholar 

  • Hauer, A., “Thermochemical Energy Storage in Open Systems—Temperature Lift, Coefficient of Performance and Energy Density,” in Proc. 8th Internat. Conf. on Thermal Energy, Brenner, M. and E.W. Hahne (Eds.), pp. 391–396, Terrastock,Stuttgart, Germany, 2000.

  • Hauer, A., “Beurteilung fester Adsorbentien in offenen Sorptionssystemen für energetische Anwendungen,”Thesis, Technische Universität Berlin, 2002.

  • Jänchen, J., et al., “Studies of Water Adsorption on Zeolites and Modified Mesoporous Materials for Seasonal Storage of Solar Heat,” Solar Energy, 76, 339–344 (2004).

    Google Scholar 

  • Levitzki, E.A., Y.I. Aristov et al., “Chemical Heat Accumulators: A New Approach to Accumulating Low Potential Heat,” Solar Energy Mat. and Solar Cells, 44, 219–235 (1996).

    Google Scholar 

  • Mugele, J., “Optimierung von Speichermaterialien für den Einsatz in einem thermo-chemischen Wärmespeicherfür gebäudetechnische Anwendungen,” Promotionsarbeit, Technische Universität Berlin, 2004.

  • Nuñez, T. et al., “Adsorption Cycle Modelling: Characterization and Comparison of Materials,” Intern.Sorp. Heat Process Conf., pp. 209–217 1999, Munnich, Germany.

  • Nuñez, T., “Charakterisierung und Bewertung von Adsorbentien für Wärmetrans-formationsanwendungen,”Thesis, Albert-Ludwigs Universität Freiburg im Breisgau, 2001.

  • Polany, M., “über die Adsorption vom Standpunkt des dritten Wärmesatzes,” Verh. Dtsch. Phys.-Ges., 16, 1012–1017 (1914).

    Google Scholar 

  • SETARAM, “Thermal Analysis and Calorimetry, Scientific and Industrial Equipment,” Firmenschrift (C80) 2000,Caluire, France.

  • Stach, H. and J. Jänchen, “Untersuchungen zur thermochemischen Wärmespeicherung,” Chem. Techn., 52, 15–18 (2000).

    CAS  Google Scholar 

  • Stach, H., et al., Schlussbericht: “Entwicklung und Charakterisierung von mikroporösen Festkörpern fürdie adsorptive Langzeitspeicherung von Niedertemperaturwärme,” Förderkennzeichen: 0329 525C, 28.02.2001,BMWi, 53107 Bonn.

  • Stach, H. et al., “Mikroporöse und mesoporöse Adsorbentien für die thermochemische Wärmespeicherung,” Lecture, BMWi-Workshop, Worms, 2002.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stach, H., Mugele, J., Jänchen, J. et al. Influence of Cycle Temperatures on the Thermochemical Heat Storage Densities in the Systems Water/Microporous and Water/Mesoporous Adsorbents. Adsorption 11, 393–404 (2005). https://doi.org/10.1007/s10450-005-5405-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-005-5405-x

Keywords

Navigation