Skip to main content

Plasma Catalysis Systems

  • Chapter
  • First Online:
Plasma Catalysis

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 106))

Abstract

Nonthermal plasmas (NTPs) can be generated using relatively low input energy and they can produce high concentrations of chemically active species at temperatures that do not alter the thermodynamic equilibrium of a reaction, which is why they have found application as promoters for a variety of different chemical reactions. The performance of NTP-promoted chemical reactions can be enhanced by combining the plasmas with catalysts, which results from synergetic effects from interactions between the catalyst and the plasma. Although these effects are not completely understood, they have been exploited by combining different NTPs and catalysts using a plethora of reactor configurations for an even greater number of reactions. This chapter outlines some of the underlying principles of plasma chemistry, introduces some of the most important NTPs used in plasma-chemical and plasma-catalytic reactions, and explores some of the different reactor configurations used for plasma-catalytic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mizuno, A., Clements, J. S., & Davis, R. H. (1986). A method for the removal of sulfur dioxide from exhaust gas utilizing pulsed streamer corona for electron energization. IEEE Transactions on Industry Applications, IA-22, 516–522.

    Article  Google Scholar 

  2. Eliasson, B., Member, S., & Kogelschatz, U. (1991). Nonequilibrium volume plasma chemical processing. IEEE Transactions on Plasma Science, 19, 1063–1077.

    Article  ADS  Google Scholar 

  3. Kim, H.-H., Teramoto, Y., Negishi, N., & Ogata, A. (2015). A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review. Catalysis Today, 256, 13–22.

    Article  Google Scholar 

  4. Penetrante, M. B. (1993). Plasma chemistry and power consumption in non-thermal DeNOx. In Non-thermal plasma techniques for pollution control. Part A. Overview, fundamentals and supporting technologies (pp. 65–89). Berlin: Springer.

    Chapter  Google Scholar 

  5. Nozaki, T., & Okazaki, K. (2013). Non-thermal plasma catalysis of methane : Principles , energy efficiency , and applications. Catalysis Today, 211, 29–38.

    Article  Google Scholar 

  6. Okazaki, K., Kishida, T., Ogawa, K., & Nozaki, T. (2002). Direct conversion from methane to methanol for high efficiency energy system with exergy regeneration. Energy Conversion and Management, 43, 1459–1468.

    Article  Google Scholar 

  7. Snoeckx, R., Aerts, R., Tu, X., & Bogaerts, A. (2013). Plasma-based dry reforming: A computational study ranging from the nanoseconds to seconds time scale. Journal of Physical Chemistry C, 117, 4957–4970.

    Article  Google Scholar 

  8. Bruggeman, P., Iza, F., Lauwers, D., & Gonzalvo, Y. A. (2010). Mass spectrometry study of positive and negative ions in a capacitively coupled atmospheric pressure RF excited glow discharge in He–water mixtures. Journal of Physics D: Applied Physics, 43, 12003.

    Article  Google Scholar 

  9. Ono, R., & Oda, T. (2003). Dynamics of ozone and OH radicals generated by pulsed corona discharge in humid-air flow reactor measured by laser spectroscopy. Journal of Applied Physics, 93, 5876–5882.

    Article  ADS  Google Scholar 

  10. Ikawa, S., Kitano, K., & Hamaguchi, S. (2010). Effects of pH on bacterial inactivation in aqueous solutions due to low-temperature atmospheric pressure plasma application. Plasma Processes and Polymers, 7, 33–42.

    Article  Google Scholar 

  11. Kim, H. H., Kim, J. H., & Ogata, A. (2008). Adsorption and oxygen plasma-driven catalysis for total oxidation of VOCs. International Journal of Environmental Science and Technology, 2, 106–112.

    Google Scholar 

  12. Vandenbroucke, A. M., Morent, R., De Geyter, N., & Leys, C. (2011). Non-thermal plasmas for non-catalytic and catalytic VOC abatement. Journal of Hazardous Materials, 195, 30–54.

    Article  Google Scholar 

  13. Van Durme, J., Dewulf, J., Leys, C., & Van Langenhove, H. (2008). Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Applied Catalysis B: Environmental, 78, 324–333.

    Article  Google Scholar 

  14. Sato, S., Kawada, Y., Sato, S., Hosoya, M., & Mizuno, A. (2011). The study of NOx reduction using plasma-assisted SCR system for a heavy duty diesel engine. SAE Technical Paper. 2011-01-0310, 2007.

    Google Scholar 

  15. Kuwahara, T., Yoshida, K., Kannaka, Y., Kuroki, T., & Okubo, M. (2011). Improvement of NOx reduction efficiency in diesel emission control using nonthermal plasma combined exhaust gas recirculation process. IEEE Transactions on Industry Applications, 47, 2359–2366.

    Article  Google Scholar 

  16. Mizuno, A., Chakrabarti, A., & Okazaki, K. (1993). Application of corona technology in the reduction of greenhouse gases and other gaseous pollutants. Non-Thermal Plasma Techniques for Pollution Control, 34, 165–185.

    Article  Google Scholar 

  17. Starikovskii, A. Y., Anikin, N. B., Kosarev, I. N., Mintoussov, E. I., Nudnova, M. M., Rakitin, A. E., Roupassov, D. V., Starikovskaia, S. M., & Zhukov, V. P. (2008). Nanosecond-pulsed discharges for plasma-assisted combustion and aerodynamics. Journal of Propulsion and Power, 24, 1182–1197.

    Article  Google Scholar 

  18. Fridman, A. G., & A.R. and A. (2011). Combustion-assisted plasma in fuel conversion. Journal of Physics D: Applied Physics, 44, 274001.

    Article  Google Scholar 

  19. Tu, X., Gallon, H. J., Twigg, M. V., & Gorry, P. A. (2011). Dry reforming of methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor. Journal of Physics D: Applied Physics, 44, 274007.

    Article  Google Scholar 

  20. Jiang, T., Li, Y., Liu, C., Xu, G., Eliasson, B., & Xue, B. (2002). Plasma methane conversion using dielectric-barrier discharges with zeolite A. Catalysis Today, 72, 229–235.

    Article  Google Scholar 

  21. Okumoto, M., Su, Z., Katsura, S., & Mizuno, A. (1999). Dilution effect with inert gases in direct synthesis of methanol from methane using nonthermal plasma. IEEE Transactions on Industry Applications, 35, 1205–1210.

    Article  Google Scholar 

  22. Paulussen, S., Verheyde, B., Tu, X., De Bie, C., Martens, T., Petrovic, D., Bogaerts, A., & Sels, B. (2010). Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges. Plasma Sources Science and Technology, 19, 34015.

    Article  Google Scholar 

  23. Jogan, K., Mizuno, A., Yamamoto, T., & Chang, J. (1993). The effect of residence time on the CO2 reduction from combustion flue gases by an AC ferroelectric packed bed reactor. IEEE Transactions on Industry Applications, 29, 876–881.

    Article  Google Scholar 

  24. Kim, H.-H., Teramoto, Y., Ogata, A., Takagi, H., & Nanba, T. (2016). Plasma catalysis for environmental treatment and energy applications. Plasma Chemistry and Plasma Processing, 36, 45–72.

    Article  Google Scholar 

  25. Jasiński, M., Dors, M., & Mizeraczyk, J. (2008). Production of hydrogen via methane reforming using atmospheric pressure microwave plasma. Journal of Power Sources, 181, 41–45.

    Article  ADS  Google Scholar 

  26. Fridman, A., & Kennedy, L. A. (2011). Plasma physics and engineering. Hoboken: CRC Press.

    Google Scholar 

  27. Loeb, L.B. (1965). Electrical coronas: their basic physical mechanisms. Berkeley: University of California Press, pp. 694

    Google Scholar 

  28. Mizuno, A., Kamase, Y., Tsugawa, H., Shibuya, A., & Yamamoto, K. (1987). Effect of pulse rising rate on current emission and ozone formation in a pulsed streamer corona discharge in air. 8th International symposium on plasma chemistry (pp. 2216–2221). Tokyo, Japan.

    Google Scholar 

  29. van Heesch, E. J. M., Winands, G. J. J., & Pemen, A. J. M. (2008). Evaluation of pulsed streamer corona experiments to determine the O∗ radical yield. Journal of Physics D: Applied Physics, 41, 234015.

    Article  ADS  Google Scholar 

  30. Shang, K., & Wu, Y. (2010). Effect of electrode configuration and corona polarity on NO removal by pulse corona plasma. 2010 Asia-Pacific power energy engineering conference, Asia Pacific, p. 1–4.

    Google Scholar 

  31. Fridman, A. (2008). Plasma chemistry. Cambridge, MA: Cambridge University Press.

    Book  Google Scholar 

  32. Conrads, H., & Schmidt, M. (2000). Plasma generation and plasma sources. Plasma Sources Science and Technology, 9, 441.

    Article  ADS  Google Scholar 

  33. Kogelschatz, U., Eliasson, B., & Egli, W. (1999). From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges. Pure and Applied Chemistry, 71, 1819.

    Article  Google Scholar 

  34. Wang, L., Yi, Y., Wu, C., Guo, H., & Tu, X. (2017). One-step reforming of CO2 and CH4 into high-value liquid chemicals and fuels at room temperature by plasma-driven catalysis. Angewandte Chemie International Edition, 56, 13679–13683.

    Article  Google Scholar 

  35. Okazaki, S., Kogoma, M., Uehara, M., & Kimura, Y. (1993). Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source. Journal of Physics D: Applied Physics, 26, 889.

    Article  ADS  Google Scholar 

  36. Schutze, A., Jeong, J. Y., Babayan, S. E., Park, J., Selwyn, G. S., & Hicks, R. F. (1998). The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Transactions on Plasma Science, 26, 1685–1694.

    Article  ADS  Google Scholar 

  37. Ehlbeck, E., Schnabel, U., Polak, M., Winter, J., von Woedtke, T., Brandenburg, R., Hagen, T. v. d., & Weltmann, K.-D. (2011). Low temperature atmospheric pressure plasma sources for microbial decontamination. Journal of Physics D: Applied Physics, 44, 013002.

    Article  ADS  Google Scholar 

  38. Liu, G., Li, Y., Chu, W., Shi, X., Dai, X., & Yin, Y. (2008). Plasma-assisted preparation of Ni/SiO2 catalyst using atmospheric high frequency cold plasma jet. Catalysis Communications, 9, 1087–1091.

    Article  Google Scholar 

  39. Shang, S., Liu, G., Chai, X., Tao, X., Li, X., Bai, M., Chu, W., Dai, X., Zhao, Y., & Yin, Y. (2009). Research on Ni/γ-Al2O3 catalyst for CO2 reforming of CH4 prepared by atmospheric pressure glow discharge plasma jet. Catalysis Today, 148, 268–274.

    Article  Google Scholar 

  40. Cheng, D.-G. (2008). Plasma decomposition and reduction in supported metal catalyst preparation. Catalysis Surveys from Asia, 12, 145–151.

    Article  Google Scholar 

  41. Masuda, S., Akutsu, K., Kuroda, M., Awatsu, Y., & Shibuya, Y. (1988). A ceramic-based ozonizer using high-frequency discharge. IEEE Transactions on Industry Applications, 24, 223–231.

    Article  Google Scholar 

  42. Pietsch, G. J. (2001). Peculiarities of dielectric barrier discharges. Contributions to Plasma Physics, 41, 620–628.

    Article  ADS  Google Scholar 

  43. Malik, M. A., Schoenbach, K. H., & Heller, R. (2014). Coupled surface dielectric barrier discharge reactor-ozone synthesis and nitric oxide conversion from air. Chemical Engineering Journal, 256, 222–229.

    Article  Google Scholar 

  44. Affonso Nobrega, P., Blin-Simiand, N., Bournonville, B., Jorand, F., Lacour, B., Pasquiers, S., Rohani, V., Cauneau, F., & Fulcheri, L. (2017). Comparison between performances of surface and volume nanosecond pulsed dielectric barrier discharges for the treatment of volatile organic compounds. 23rd International Symposium on Plasma Chemistry, at Montréal.

    Google Scholar 

  45. Zhao, Y., Shang, K., Duan, L., Shang, K., Tang, S., & Lu, N. (2013). Oxidation efficiency of elemental mercury in two DBD plasma reactors Oxidation efficiency of elemental mercury in two DBD plasma reactors. Journal of Physics Conference Series, 418, 012118.

    Article  Google Scholar 

  46. Hensel, K., Katsura, S., & Mizuno, A. (2005). DC microdischarges inside porous ceramics. IEEE Transactions on Plasma Science, 33, 574–575.

    Article  ADS  Google Scholar 

  47. Hensel, K., Martišovitš, V., Machala, Z., Janda, M., Leštinský, M., Tardiveau, P., & Mizuno, A. (2007). Electrical and optical properties of AC microdischarges in porous ceramics. Plasma Processes and Polymers, 4, 682–693.

    Article  Google Scholar 

  48. Hensel, K., Katsura, S., & Mizuno, A. (2005). DC microdischarges inside porous ceramics. IEEE Transactions on Plasma Science, 33, 574–575.

    Article  ADS  Google Scholar 

  49. Hensel, K., Martisovits, V., Machala, Z., Janda, M., Lestinsky, M., Tardiveau, P., & Mizuno, A. (2007). Electrical and optical properties of AC microdischarges in porous ceramics. Plasma Processes and Polymers, 4, 682–693.

    Article  Google Scholar 

  50. Locke, B. R., Sato, M., Sunka, P., Hoffmann, M. R., & Chang, J.-S. (2006). Electrohydraulic discharge and nonthermal plasma for water treatment. Industrial and Engineering Chemistry Research, 45, 882–905.

    Article  Google Scholar 

  51. Nijdam, S., van Veldhuizen, E., Bruggeman, P., & Ebert, U. (2012) An introduction to nonequilibrium plasmas at atmospheric pressure. In: Plasma chemistry and catalysis in gases and liquids. Weinheim, Germany: Wiley-VCH Verlag GmbH.

    Google Scholar 

  52. Chen, S., Zhang, R., Jiang, F., & Dong, S. (2018). Experimental study on electrical property of arc column in plasma arc welding. Weinheim, Germany: Wiley-VCH Verlag GmbH.

    Google Scholar 

  53. Indarto, A., Yang, D., Choi, J.-W., Lee, H., & Keun Song, H. (2007). Gliding arc plasma processing of CO2 conversion. Journal of Hazardous Materials, 146, 309–315.

    Article  Google Scholar 

  54. Liu, S., Mei, D., Wang, L., & Tu, X. (2017). Steam reforming of toluene as biomass tar model compound in a gliding arc discharge reactor. Chemical Engineering Journal, 307, 793–802.

    Article  Google Scholar 

  55. Cerny, P., Bartos, P., Olsan, P., & Spatenka, P. (2019). Hydrophobization of cotton fabric by Gliding Arc plasma discharge. Current Applied Physics, 19, 128–136.

    Article  ADS  Google Scholar 

  56. Lu, Y., Yan, W., Hu, S., & Wang, B. (2012). Hydrogen production by methanol decomposition using gliding arc gas discharge. Journal of Fuel Chemistry and Technology, 40, 698–706.

    Google Scholar 

  57. Tu, X., & Whitehead, J. C. (2012). Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: Understanding the synergistic effect at low temperature. Applied Catalysis B: Environmental, 125, 439–448.

    Article  Google Scholar 

  58. Zhang, H., Li, X. D., Zhang, Y. Q., Chen, T., Yan, J. H., & Du, C. M. (2012). Rotating Gliding arc codriven by magnetic field and tangential flow. IEEE Transactions on Plasma Science, 40, 3493–3498.

    Article  ADS  Google Scholar 

  59. Lee, D. H., Kim, K.-T., Cha, M. S., & Song, Y.-H. (2010). Plasma-controlled chemistry in plasma reforming of methane. International Journal of Hydrogen Energy, 35, 10967–10976.

    Article  Google Scholar 

  60. Kalra, C. S., Cho, Y. I., Gutsol, A., & Fridman, A. (2005). Gliding arc in tornado using a reverse vortex flow. The Review of Scientific Instruments, 76, 025110.

    Article  ADS  Google Scholar 

  61. Shunko, E. V., Stevenson, D. E., & Belkin, V. S. (2014). Inductively coupling plasma reactor with plasma electron energy controllable in the range from ~6 to ~100 eV. IEEE Transactions on Plasma Science, 42, 774–785.

    Article  ADS  Google Scholar 

  62. Shah, J., Wang, W., Bogaerts, A., & Carreon, M. L. (2018). Ammonia synthesis by radio frequency plasma catalysis : revealing the underlying mechanisms. ACS Applied Energy Materials, 1, 4824–4839.

    Article  Google Scholar 

  63. Gao, Y., Uner, N. B., Thimsen, E., & Foston, M. B. (2018). Accessing unconventional biofuels via reactions far from local equilibrium. Fuel, 226, 472–478.

    Article  Google Scholar 

  64. Okubo, M., Saeki, N., & Yamamoto, T. (2008). Development of functional sportswear for controlling moisture and odor prepared by atmospheric pressure nonthermal plasma graft polymerization induced by RF glow discharge. Journal of Electrostatics, 66, 381–387.

    Article  Google Scholar 

  65. Schäfer, J., Foest, R., Sigeneger, F., Loffhagen, D., Weltmann, K.-D., Martens, U., & Hippler, R. (2012). Study of thin film formation from silicon-containing precursors produced by an RF non-thermal plasma jet at atmospheric pressure. Contributions to Plasma Physics, 52, 872–880.

    Article  ADS  Google Scholar 

  66. Penetrante, B. M., & Schultheis, S. E. (Eds.). (1993). Non-thermal plasma techniques for pollution control. Berlin Heidelberg: Springer.

    Google Scholar 

  67. Walton, S. G., Boris, D. R., Hernandez, S. C., Lock, E. H., Petrova, T. B., Petrov, G. M., & Fernsler, R. F. (2015). Electron beam generated plasmas for ultra low T e processing. ECS Journal of Solid State Science and Technology, 4, 5033–5040.

    Article  Google Scholar 

  68. Walton, S. G., Hernández, S. C., Boris, D. R., Petrova, T. B., & Petrov, G. M. (2017). Electron beam generated plasmas for the processing of graphene. Journal of Physics D: Applied Physics, 50, 354001.

    Article  Google Scholar 

  69. Leonhardt, D., Muratore, C., & Walton, S. G. (2005). Applications of electron-beam generated plasmas to materials processing. IEEE Transactions on Plasma Science, 33, 783–790.

    Article  ADS  Google Scholar 

  70. Vitale, S. A., Hadidi, K., Cohn, D. R., & Bromberg, L. (1997). Decomposition of ethyl chloride and vinyl chloride in an electron beam generated plasma reactor. Radiation Physics and Chemistry, 49, 421–428.

    Article  ADS  Google Scholar 

  71. Mizuno, A., Shimizu, K., Yanagihara, K., Kinoshita, K., Tsunoda, K., Kim, H. H., & Katsura, S. (1996). Effect of additives and catalysts on removal of nitrogen oxides using pulsed discharge. IAS ‘96. Conference record 1996 IEEE industry application conference: Thirty-first IAS annual meeting, San Diego, CA, USA, 3, 1808–1812.

    Google Scholar 

  72. Whitehead, J. C. (2010). Plasma catalysis: A solution for environmental problems. Pure and Applied Chemistry, 82, 1329.

    Article  Google Scholar 

  73. Yoshida, H., Marui, Z., Aoyama, M., Sugiura, J., & Mizuno, A. (1989). Removal of odor gas component utilizing plasma chemical reactions promoted by the partial discharge in a ferroelectric Pellet Layer. J. Inst. Electrost. Japan, 13, 425–430.

    Google Scholar 

  74. Kim, H.-H., Sugasawa, M., Hirata, H., Teramoto, Y., Kosuge, K., Negishi, N., & Ogata, A. (2013). Ozone-assisted catalysis of toluene with layered ZSM-5 and Ag/ZSM-5 zeolites. Plasma Chemistry and Plasma Processing, 33, 1083–1098.

    Article  Google Scholar 

  75. Djéga-Mariadassou, G., Baudin, F., Khacef, A., Da Costa, P. (2012). NOx abatement by plasma catalysis. In: Plasma chemistry and catalysis in gases and liquids. Weinheim, Germany: Wiley-VCH Verlag GmbH.

    Chapter  Google Scholar 

  76. Penetrante, B. M., Brusasco, R. M., Merritt, B. T., & Vogtlin, G. E. (1999). Environmental applications of low-temperature plasmas. Pure and Applied Chemistry, 71, 1829–1835.

    Article  Google Scholar 

  77. Mok, Y. S., Koh, D. J., Kim, K. T., & Nam, I.-S. (2003). Nonthermal plasma-enhanced catalytic removal of nitrogen oxides over V2O5/TiO2 and Cr2O3/TiO2. Industrial and Engineering Chemistry Research, 42, 2960–2967.

    Article  Google Scholar 

  78. Bröer, S., & Hammer, T. (2000). Selective catalytic reduction of nitrogen oxides by combining a non-thermal plasma and a V2O5-WO3/TiO2 catalyst. Applied Catalysis B: Environmental, 28, 101–111.

    Article  Google Scholar 

  79. Kim, H., Ogata, A., & Futamura, S. (2008). Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma. Applied Catalysis B: Environmental, 79, 356–367.

    Article  Google Scholar 

  80. Mizuno, A., & Ito, H. (1990). Basic performance of an electrostatically augmented filter consisting of a packed ferroelectric pellet layer. Journal of Electrostatics, 25, 97–107.

    Article  Google Scholar 

  81. Sentek, J., Krawczyk, K., Młotek, M., Kalczewska, M., Kroker, T., Kolb, T., Schenk, A., Gericke, K., & Schmidt-szałowski, K. (2010). Environmental Plasma-catalytic methane conversion with carbon dioxide in dielectric barrier discharges. Applied Catalysis B: Environmental, 94, 19–26.

    Article  Google Scholar 

  82. Van Laer, K., & Bogaerts, A. (2015). Improving the conversion and energy efficiency of carbon dioxide splitting in a Zirconia-packed dielectric barrier discharge reactor. Energy Technology, 3, 1038–1044.

    Article  Google Scholar 

  83. Michielsen, I., Uytdenhouwen, Y., Pype, J., Michielsen, B., Mertens, J., Reniers, F., Meynen, V., & Bogaerts, A. (2017). CO2 dissociation in a packed bed DBD reactor: First steps towards a better understanding of plasma catalysis. Chemical Engineering Journal, 326, 477–488.

    Article  Google Scholar 

  84. Zhang, Y., Van Laer, K., Neyts, E. C., & Bogaerts, A. (2016). Can plasma be formed in catalyst pores ? A modeling investigation. Applied Catalysis B: Environmental, 185, 56–67.

    Article  Google Scholar 

  85. Babaeva, N. Y., & Kushner, M. J. (2010). Intracellular electric fields produced by dielectric barrier discharge treatment of skin. Journal of Physics D: Applied Physics, 43, 185206.

    Article  ADS  Google Scholar 

  86. Wada, N. (2013). High efficiency and high concentration ozone generation. J. Soc. Electr. Mater. Eng., 22, 26–34.

    Google Scholar 

  87. Moreau, E. (2007). Airflow control by non-thermal plasma actuators. Journal of Physics D: Applied Physics, 40, 605.

    Article  ADS  Google Scholar 

  88. Hensel, K., Sato, S., & Mizuno, A. (2008). Sliding discharge inside glass capillaries. IEEE Transactions on Plasma Science, 36, 1282–1283.

    Article  ADS  Google Scholar 

  89. Sato, S., Hensel, K., Hayashi, H., Takashima, K., & Mizuno, A. (2009). Honeycomb discharge for diesel exhaust cleaning. Journal of Electrostatics, 67, 77–83.

    Article  Google Scholar 

  90. Benard, N., Mizuno, A., & Moreau, E. (2015). Manipulation of a grid-generated mixing with an active honeycomb dielectric barrier plasma discharge. Applied Physics Letters, 107, 233508.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

A. Mizuno is grateful for the researchers and engineers collaborating together for the development of the plasma processes. The author also thanks the members of the laboratory and the graduated students who have worked for the plasma processes at Toyohashi University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akira Mizuno or Michael Craven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mizuno, A., Craven, M. (2019). Plasma Catalysis Systems. In: Tu, X., Whitehead, J., Nozaki, T. (eds) Plasma Catalysis. Springer Series on Atomic, Optical, and Plasma Physics, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-030-05189-1_2

Download citation

Publish with us

Policies and ethics