Skip to main content

Quantifying Digestion Products: Physicochemical Aspects

  • Chapter
  • First Online:
Interdisciplinary Approaches to Food Digestion

Abstract

Engineering the digestibility of foods mandates control over the complex compositions and structures that form, disintegrate, and are taken up in the human alimentary canal. Such rational design of oral intake can be attained through careful efforts to understand the underlying determinants of bioaccessibility and bioavailability. Thus, adequate quantification of the physicochemical aspects of digesta is of high importance. This chapter focuses on the practical aspects of analyzing digesta and the multifaceted scientific and technological challenges involved. Readers are provided with an overview of the physicochemical parameters that are commonly determined in digesta, the rational for method selection and the current literature detailing biochemical, chemical, and physical analyses of digesta. Hopefully, this will encourage more research professionals to adapt a holistic foodomics approach and coupling it with advanced analytics and computerization tools (e.g., big-data handling) in order to understand the digestive fate of foods. This will greatly stimulate and facilitate interdisciplinary endeavors that will help shape the future of food science and food manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alamed, J., Chaiyasit, W., McClements, D. J., & Decker, E. A. (2009). Relationships between free radical scavenging and antioxidant activity in foods. Journal of Agricultural and Food Chemistry, 57(7), 2969–2976.

    Article  CAS  PubMed  Google Scholar 

  • Albenberg, L. G., & Wu, G. D. (2014). Diet and the intestinal microbiome: Associations, functions, and implications for health and disease. Gastroenterology, 146(6), 1564–1572.

    Article  CAS  PubMed  Google Scholar 

  • AlHasawi, F. M., Fondaco, D., Ben-Elazar, K., Ben-Elazar, S., Fan, Y. Y., Corradini, M. G., et al. (2017). In vitro measurements of luminal viscosity and glucose/maltose bioaccessibility for oat bran, instant oats, and steel cut oats. Food Hydrocolloids, 70, 293–303.

    Article  CAS  Google Scholar 

  • Apostolovic, D., Stanic-Vucinic, D., de Jongh, H. H. J., de Jong, G. A. H., Mihailovic, J., Radosavljevic, J., et al. (2016). Conformational stability of digestion-resistant peptides of peanut conglutins reveals the molecular basis of their allergenicity. Scientific Reports, 6, 29249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belenguer, A., Duncan, S. H., Calder, A. G., Holtrop, G., Louis, P., Lobley, G. E., et al. (2006). Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Applied and Environmental Microbiology, 72(5), 3593–3599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belyaeva, L. Y., & Beklemishev, M. K. (2011). Determination of glucose by a kinetic method on a thin-layer chromatogram using the oxidation of 3,3′,5,5′-tetramethylbenzidine with hydrogen peroxide. Journal of Analytical Chemistry, 66(4), 425–432.

    Article  CAS  Google Scholar 

  • Bogh, K. L., & Madsen, C. B. (2016). Food allergens: Is there a correlation between stability to digestion and allergenicity? Critical Reviews in Food Science and Nutrition, 56(9), 1545–1567.

    Article  PubMed  CAS  Google Scholar 

  • Bohn, T., Carriere, F., Day, L., Deglaire, A., Egger, L., Freitas, D., et al. (2017). Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2017.1315362

    Article  PubMed  Google Scholar 

  • Bordoni, A., Laghi, L., Babini, E., Di Nunzio, M., Picone, G., Ciampa, A., et al. (2014). The foodomics approach for the evaluation of protein bioaccessibility in processed meat upon in vitro digestion. Electrophoresis, 35(11), 1607–1614.

    Article  CAS  PubMed  Google Scholar 

  • Bornhorst, G. M., Ferrua, M. J., & Singh, R. P. (2015). A proposed food breakdown classification system to predict food behavior during gastric digestion. Journal of Food Science, 80(5), R924–R934.

    Article  CAS  PubMed  Google Scholar 

  • Bornhorst, G. M., Gouseti, O., Wickham, M. S. J., & Bakalis, S. (2016). Engineering digestion: Multiscale processes of food digestion. Journal of Food Science, 81(3), R534–R543.

    Article  CAS  PubMed  Google Scholar 

  • Buzanovskii, V. A. (2015). Methods for the determination of glucose in blood. Part 1. Review Journal of Chemistry, 5(1), 30–81.

    Article  CAS  Google Scholar 

  • Capolino, P., Guérin, C., Paume, J., Giallo, J., Ballester, J. M., Cavalier, J. F., et al. (2011). In vitro gastrointestinal lipolysis: Replacement of human digestive lipases by a combination of rabbit gastric and porcine pancreatic extracts. Food Digestion, 2(1–3), 43–51.

    Article  CAS  Google Scholar 

  • Capron, I., Yvon, M., & Muller, G. (1996). In-vitro gastric stability of carrageenan. Food Hydrocolloids, 10(2), 239–244.

    Article  CAS  Google Scholar 

  • Chu, B. S., Gunning, A. P., Rich, G. T., Ridout, M. J., Faulks, R. M., Wickham, M. S. J., et al. (2010). Adsorption of bile salts and pancreatic colipase and lipase onto digalactosyldiacylglycerol and dipalmitoylphosphatidylcholine monolayers. Langmuir, 26(12), 9782–9793.

    Article  CAS  PubMed  Google Scholar 

  • Chu, B. S., Rich, G. T., Ridout, M. J., Faulks, R. M., Wickham, M. S. J., & Wilde, P. J. (2009). Modulating pancreatic lipase activity with galactolipids: Effects of emulsion interfacial composition. Langmuir, 25(16), 9352–9360.

    Article  CAS  PubMed  Google Scholar 

  • Clare Mills, E. N., Sancho, A. I., Rigby, N. M., Jenkins, J. A., & Mackie, A. R. (2009). Impact of food processing on the structural and allergenic properties of food allergens. Molecular Nutrition and Food Research, 53(8), 963–969.

    Article  CAS  Google Scholar 

  • Cohen, Y., Levi, M., Lesmes, U., Margier, M., Reboul, E., Livney, Y. D., et al. (2017). Re-assembled casein micelles improve in vitro bioavailability of vitamin D in a Caco-2 cell model. Food and Function, 8(6), 2133–2141.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, R., Schwartz, B., Peri, I., & Shimoni, E. (2011). Improving bioavailability and stability of genistein by complexation with high-amylose corn starch. Journal of Agricultural and Food Chemistry, 59(14), 7932–7938.

    Article  CAS  PubMed  Google Scholar 

  • David-Birman, T., Mackie, A., & Lesmes, U. (2013). Impact of dietary fibers on the properties and proteolytic digestibility of lactoferrin nano-particles. Food Hydrocolloids, 31(1), 33–41.

    Article  CAS  Google Scholar 

  • de Oliveira, S. C., Bourlieu, C., Ménard, O., Bellanger, A., Henry, G., Rousseau, F., et al. (2016). Impact of pasteurization of human milk on preterm newborn in vitro digestion: Gastrointestinal disintegration, lipolysis and proteolysis. Food Chemistry, 211, 171–179.

    Article  CAS  PubMed  Google Scholar 

  • Dupont, D., Mandalari, G., Molle, D., Jardin, J., Léonil, J., Faulks, R. M., et al. (2010). Comparative resistance of food proteins to adult and infant in vitro digestion models. Molecular Nutrition and Food Research, 54(6), 767–780.

    Article  CAS  PubMed  Google Scholar 

  • Egger, L., Ménard, O., Delgado-Andrade, C., Alvito, P., Assunção, R., Balance, S., et al. (2015). The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Research International, 88, 217–225.

    Article  CAS  Google Scholar 

  • Englyst, K. N.; Hudson, G. J.; Englyst, H. N.; Englyst, K. N.; Hudson, G. J.; Englyst, H. N. Starch analysis in food. In Meyers, R. A. Encyclopedia of analytical chemistry; Wiley: Chichester, 2006.

    Google Scholar 

  • Englyst, K. N., Liu, S., & Englyst, H. N. (2007a). Nutritional characterization and measurement of dietary carbohydrates. European Journal of Clinical Nutrition, 61, S19–S39.

    Article  CAS  PubMed  Google Scholar 

  • Englyst, K., Liu, S., & Englyst, H. (2007b). Nutritional characterization and measurement of dietary carbohydrates. European Journal of Clinical Nutrition, 61, 19–39.

    Article  CAS  Google Scholar 

  • Etienne-mesmin, L., Denis, S., Guerra, A., Etienne-mesmin, L., Livrelli, V., Denis, S., et al. (2012). Relevance and challenges in modeling human gastric and small intestinal digestion (review, 2012).pdf. Trends in Biotechnology, 30(11), 591–600.

    Article  PubMed  CAS  Google Scholar 

  • Ferranti, P., Nitride, C., Nicolai, M. A., Mamone, G., Picariello, G., Bordoni, A., et al. (2014). In vitro digestion of Bresaola proteins and release of potential bioactive peptides. Food Research International, 63, 157–169.

    Article  CAS  Google Scholar 

  • Flamm, G., Glinsmann, W., Kritchevsky, D., Prosky, L., & Roberfroid, M. (2001). Inulin and oligofructose as dietary fiber: A review of the evidence. Critical Reviews in Food Science and Nutrition, 41(5), 353–362.

    Article  CAS  PubMed  Google Scholar 

  • Gamez, C., Paz Zafra, M., Sanz, V., Mazzeo, C., Dolores Ibanez, M., Sastre, J., et al. (2015). Simulated gastrointestinal digestion reduces the allergic reactivity of shrimp extract proteins and tropomyosin. Food Chemistry, 173, 475–481.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. The Journal of Nutrition, 125(6), 1401–1412.

    Article  CAS  PubMed  Google Scholar 

  • Haham, M., Ish-Shalom, S., Nodelman, M., Duek, I., Segal, E., Kustanovich, M., et al. (2012). Stability and bioavailability of vitamin D nanoencapsulated in casein micelles. Food and Function, 3(7), 737.

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Ledesma, B., Quirós, A., Amigo, L., & Recio, I. (2007). Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin. International Dairy Journal, 17(1), 42–49.

    Article  CAS  Google Scholar 

  • Hu, X., Lu, L., Fang, C., Duan, B., & Zhu, Z. (2015). Determination of apparent amylose content in rice by using paper-based microfluidic chips. Journal of Agricultural and Food Chemistry, 63(44), 9863–9868.

    Article  CAS  PubMed  Google Scholar 

  • Huan, P. D. (2005). The chemistry behind antioxidant capacity assays the chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(April), 1841–1856.

    Article  CAS  Google Scholar 

  • Humblet-Hua, K. N. P., Scheltens, G., van der Linden, E., & Sagis, L. M. C. (2011). Encapsulation systems based on ovalbumin fibrils and high methoxyl pectin. Food Hydrocolloids, 25(4), 569–576.

    Article  CAS  Google Scholar 

  • Hur, S. J., Lim, B. O., Decker, E. A., & McClements, D. J. (2011). In vitro human digestion models for food applications. Food Chemistry, 125(1), 1–12.

    Article  CAS  Google Scholar 

  • Jenkins, D. J., Wolever, T. M., Taylor, R. H., Barker, H., Fielden, H., Baldwin, J. M., et al. (1981). Glycemic index of foods: A physiological basis for carbohydrate exchange. The American Journal of Clinical Nutrition, 34(3), 362–366.

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Saiz, R., Benedé, S., Molina, E., & López-Expósito, I. (2015). Effect of processing technologies on the allergenicity of food products. Critical Reviews in Food Science and Nutrition, 55(13), 1902–1917.

    Article  PubMed  CAS  Google Scholar 

  • Joubran, Y., Mackie, A., & Lesmes, U. (2013). Impact of the Maillard reaction on the structure and functionality of lactoferrin. Food Chemistry, 141(April), 9–12.

    Google Scholar 

  • Kong, F., & Singh, R. P. (2011). Solid loss of carrots during simulated gastric digestion. Food Biophysics, 6(1), 84–93.

    Article  PubMed  Google Scholar 

  • Kopf-Bolanz, K. A., Schwander, F., Gijs, M., Vergè, G., Portmann, R., & Egger, L. (2012). Validation of an in vitro digestive system for studying macronutrient decomposition in humans. The Journal of Nutrition, 142, 245–250.

    Article  CAS  PubMed  Google Scholar 

  • Kopf-Bolanz, K. A., Schwander, F., Gijs, M., Vergères, G., Portmann, R., & Egger, L. (2014). Impact of milk processing on the generation of peptides during digestion. International Dairy Journal, 35(2), 130–138.

    Article  CAS  Google Scholar 

  • Kozu, H., Kobayashi, I., Nakajima, M., Neves, M. A., Uemura, K., Isoda, H., et al. (2017). Mixing characterization of liquid contents in human gastric digestion simulator equipped with gastric secretion and emptying. Biochemical Engineering Journal, 122, 85–90.

    Article  Google Scholar 

  • Kozu, H., Kobayashi, I., Nakajima, M., Uemura, K., Sato, S., & Ichikawa, S. (2010). Analysis of flow phenomena in gastric contents induced by human gastric peristalsis using CFD. Food Biophysics, 5(4), 330–336.

    Article  Google Scholar 

  • Lesmes, U., Barchechath, J., & Shimoni, E. (2008). Continuous dual feed homogenization for the production of starch inclusion complexes for controlled release of nutrients. Innovative Food Science and Emerging Technologies, 9(4), 507–515.

    Article  CAS  Google Scholar 

  • Lesmes, U., Beards, E. J., Gibson, G. R., Tuohy, K. M., & Shimoni, E. (2008). 77. Effects of resistant starch type III polymorphs on human colon microbiota and short chain fatty acids in human gut models. Journal of Agricultural and Food Chemistry, 56(13), 5415–5421.

    Article  CAS  PubMed  Google Scholar 

  • Lesmes, U., & McClements, D. J. (2012). Controlling lipid digestibility: Response of lipid droplets coated by β-lactoglobulin-dextran Maillard conjugates to simulated gastrointestinal conditions. Food Hydrocolloids, 26(1), 221–230.

    Article  CAS  Google Scholar 

  • Levi, C. S., Alvito, P., Andrés, A., Assunção, R., Barberá, R., Blanquet-Diot, S., et al. (2016). Extending in vitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information. Trends in Food Science and Technology, 60, 52–63.

    Article  CAS  Google Scholar 

  • Li, Y., Hu, M., & McClements, D. J. (2011). Factors affecting lipase digestibility of emulsified lipids using an in vitro digestion model: Proposal for a standardised pH-stat method. Food Chemistry, 126(2), 498–505.

    Article  CAS  Google Scholar 

  • Liu, W., Kong, Y., Tu, P., Lu, J., Liu, C., Liu, W., et al. (2017). Physical–chemical stability and in vitro digestibility of hybrid nanoparticles based on the layer-by-layer assembly of lactoferrin and BSA on liposomes. Food and Function, 8(4), 1688–1697.

    Article  CAS  PubMed  Google Scholar 

  • Liu, D., Parker, H. L., Curcic, J., Schwizer, W., Fried, M., Kozerke, S., et al. (2016). The visualisation and quantification of human gastrointestinal fat distribution with MRI: A randomised study in healthy subjects. The British Journal of Nutrition, 115(5), 903–912.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W., Ye, A., Liu, W., Liu, C., & Singh, H. (2013). Stability during in vitro digestion of lactoferrin-loaded liposomes prepared from milk fat globule membrane-derived phospholipids. Journal of Dairy Science, 96(4), 2061–2070.

    Article  CAS  PubMed  Google Scholar 

  • Logan, K., Wright, A. J., & Goff, H. D. (2015). Correlating the structure and in vitro digestion viscosities of different pectin fibers to in vivo human satiety. Food and Function, 6(1), 63–71.

    Article  PubMed  CAS  Google Scholar 

  • Louis, P., & Flint, H. J. (2009). Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiology Letters, 294(1), 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Loveday, S. M., Anema, S. G., & Singh, H. (2017). β-Lactoglobulin nanofibrils: The long and the short of it. International Dairy Journal, 67, 35–45.

    Article  CAS  Google Scholar 

  • Luo, Q., Borst, J. W., Westphal, A. H., Boom, R. M., & Janssen, A. E. M. (2017). Pepsin diffusivity in whey protein gels and its effect on gastric digestion. Food Hydrocolloids, 66, 318–325.

    Article  CAS  Google Scholar 

  • Luykx, D., Peters, R. J. B., van Ruth, S. M., & Bouwmeester, H. (2008). A review of analytical methods for the identification and characterization of nano delivery systems in food. Journal of Agricultural and Food Chemistry, 56(18), 8231–8247.

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane, S., Macfarlane, G. T., & Cummings, J. H. (2006). Prebiotic in the gastrointestinal tract. Alimentary Pharmacology and Therapeutics, 24(5), 701–714.

    Article  CAS  PubMed  Google Scholar 

  • Macierzanka, A., Mackie, A. R., Bajka, B. H., Rigby, N. M., Nau, F., & Dupont, D. (2014). Transport of particles in intestinal mucus under simulated infant and adult physiological conditions: Impact of mucus structure and extracellular DNA. PLoS One, 9(4), e95274.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandalari, G., Mackie, A. M., Rigby, N. M., Wickham, M. S. J., & Mills, E. N. C. (2009). Physiological phosphatidylcholine protects bovine beta-lactoglobulin from simulated gastrointestinal proteolysis. Molecular Nutrition and Food Research, 53(Suppl. 1), S131–S139.

    Article  PubMed  Google Scholar 

  • Marcolini, E., Babini, E., Bordoni, A., Di Nunzio, M., Laghi, L., Maczó, A., et al. (2015). Bioaccessibility of the bioactive peptide carnosine during in vitro digestion of cured beef meat. Journal of Agricultural and Food Chemistry, 63(20), 4973–4978.

    Article  CAS  PubMed  Google Scholar 

  • Marze, S. (2015a). Bioaccessibility of lipophilic micro-constituents from a lipid emulsion. Food and Function, 6(10), 3218–3227.

    Article  CAS  PubMed  Google Scholar 

  • Marze, S. (2015b). Refining in silico simulation to study digestion parameters affecting the bioaccessibility of lipophilic nutrients and micronutrients. Food and Function, 6(1), 114–123.

    Article  CAS  Google Scholar 

  • Marze, S. (2017). Bioavailability of nutrients and micronutrients: Advances in modeling and in vitro approaches. Annual Review of Food Science and Technology, 8(1), 35–55.

    Article  CAS  PubMed  Google Scholar 

  • Marze, S., & Choimet, M. (2012). In vitro digestion of emulsions: Mechanistic and experimental models. Soft Matter, 8(42), 10982.

    Article  CAS  Google Scholar 

  • Matalanis, A., Jones, O. G., & McClements, D. J. (2011). Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocolloids, 25(8), 1865–1880.

    Article  CAS  Google Scholar 

  • Matalanis, A., Lesmes, U., Decker, E. A., & McClements, D. J. (2010). Fabrication and characterization of filled hydrogel particles based on sequential segregative and aggregative biopolymer phase separation. Food Hydrocolloids, 24(8), 689–701.

    Article  CAS  Google Scholar 

  • McClements, D. J. (2010). Emulsion design to improve the delivery of functional lipophilic components. Annual Review of Food Science and Technology, 1, 241–269.

    Article  CAS  PubMed  Google Scholar 

  • McClements, D. J., Decker, E. A., Park, Y., & Weiss, J. (2008). Designing food structure to control stability, digestion, release and absorption of lipophilic food components. Food Biophysics, 3(2), 219–228.

    Article  Google Scholar 

  • McClements, D. J., & Li, Y. (2010). Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components. Advances in Colloid and Interface Science, 159(2), 213–228.

    Article  CAS  PubMed  Google Scholar 

  • Meshulam, D., Slavuter, J., & Lesmes, U. (2014). Behavior of emulsions stabilized by a hydrophobically modified inulin under bio-relevant conditions of the human gastro-intestine. Food Biophysics, 9(4), 416–423.

    Article  Google Scholar 

  • Michel, C., & Macfarlane, G. T. (1996). Digestive fates of soluble polysaccharides from marine macroalgae: Involvement of the colonic microflora and physiological consequences for the host. The Journal of Applied Bacteriology, 80(4), 349–369.

    Article  CAS  PubMed  Google Scholar 

  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., et al. (2014). A standardised static in vitro digestion method suitable for food—An international consensus. Food and Function, 5(5), 1113–1124.

    Article  CAS  PubMed  Google Scholar 

  • Moayedzadeh, S., Madadlou, A., & Khosrowshahi asl, A. (2015). Formation mechanisms, handling and digestibility of food protein nanofibrils. Trends in Food Science and Technology, 45(1), 50–59.

    Article  CAS  Google Scholar 

  • Monti, L., Negri, S., Meucci, A., Stroppa, A., Galli, A., & Contarini, G. (2017). Lactose, galactose and glucose determination in naturally “lactose free” hard cheese: HPAEC-PAD method validation. Food Chemistry, 220, 18–24.

    Article  CAS  PubMed  Google Scholar 

  • Moon, J. K., & Shibamoto, T. (2009). Antioxidant assays for plant and food components. Journal of Agricultural and Food Chemistry, 57(5), 1655–1666.

    Article  CAS  PubMed  Google Scholar 

  • Moreno, F. J. (2007). Gastrointestinal digestion of food allergens: Effect on their allergenicity. Biomedicine and Pharmacotherapy, 61(1), 50–60.

    Article  CAS  PubMed  Google Scholar 

  • Moscovici, A. M., Joubran, Y., Briard-Bion, V., Mackie, A., Dupont, D., & Lesmes, U. (2014). The impact of the Maillard reaction on the in vitro proteolytic breakdown of bovine lactoferrin in adults and infants. Food and Function, 5(8), 1898.

    Article  CAS  PubMed  Google Scholar 

  • O’Hara, A. M., & Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO Reports, 7(7), 688–693.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Obiro, W. C., Sinha Ray, S., & Emmambux, M. N. (2012). V-amylose structural characteristics, methods of preparation, significance, and potential applications. Food Review International, 28(4), 412–438.

    Article  CAS  Google Scholar 

  • Oliver, N. S., Toumazou, C., Cass, A. E. G., & Johnston, D. G. (2009). Glucose sensors: A review of current and emerging technology. Diabetic Medicine, 26(3), 197–210.

    Article  CAS  PubMed  Google Scholar 

  • Payne, A. N., Zihler, A., Chassard, C., & Lacroix, C. (2012). Advances and perspectives in in vitro human gut fermentation modeling. Trends in Biotechnology, 30(1), 17–25.

    Article  CAS  PubMed  Google Scholar 

  • Rahaman, T., Vasiljevic, T., & Ramchandran, L. (2016). Effect of processing on conformational changes of food proteins related to allergenicity. Trends in Food Science and Technology, 49, 24–34.

    Article  CAS  Google Scholar 

  • Rastall, R. A. (2010). Functional oligosaccharides: Application and manufacture. Annual Review of Food Science and Technology, 1, 305–339.

    Article  CAS  PubMed  Google Scholar 

  • Reboul, E., Richelle, M., Perrot, E., Desmoulins-Malezet, C., Pirisi, V., & Borel, P. (2006). Bioaccessibility of carotenoids and vitamin E from their main dietary sources. Journal of Agricultural and Food Chemistry, 54(23), 8749–8755.

    Article  CAS  PubMed  Google Scholar 

  • Rémond, D., Shahar, D. R., Gille, D., Pinto, P., Kachal, J., Peyron, M.-A., et al. (2015). Understanding the gastrointestinal tract of the elderly to develop dietary solutions that prevent malnutrition. Oncotarget, 6(17), 13858–13898.

    PubMed  PubMed Central  Google Scholar 

  • Roberfroid, M. (2007). Prebiotics: The concept revisited. The Journal of Nutrition, 137(3 Suppl 2), 830S–837S.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Rodriguez, P. E., Meshulam, D., & Lesmes, U. (2014). Characterization of Pickering O/W emulsions stabilized by silica nanoparticles and their responsiveness to in vitro digestion conditions. Food Biophysics, 9(4), 406–415.

    Article  Google Scholar 

  • Sams, L., Paume, J., Giallo, J., & Carrière, F. (2016). Relevant pH and lipase for in vitro models of gastric digestion. Food and Function, 7(1), 30–45.

    Article  CAS  PubMed  Google Scholar 

  • Sassene, P. J., Fanø, M., Mu, H., Rades, T., Aquistapace, S., Schmitt, B., et al. (2016). Comparison of lipases for in vitro models of gastric digestion: Lipolysis using two infant formulas as model substrates. Food and Function, 7(9), 3989–3998.

    Article  CAS  PubMed  Google Scholar 

  • Schweiggert, R. M., Kopec, R. E., Villalobos-Gutierrez, M. G., Högel, J., Quesada, S., Esquivel, P., et al. (2014). Carotenoids are more bioavailable from papaya than from tomato and carrot in humans: a randomised cross-over study. The British Journal of Nutrition, 111(3), 490–498.

    Article  CAS  PubMed  Google Scholar 

  • Shani Levi, C., Goldstein, N., Portmann, R., & Lesmes, U. (2017). Emulsion and protein degradation in the elderly: Qualitative insights from a study coupling a dynamic in vitro digestion model with proteomic analyses. Food Hydrocolloids, 69, 393–401.

    Article  CAS  Google Scholar 

  • Shani-Levi, C., Levi-Tal, S., & Lesmes, U. (2013). Comparative performance of milk proteins and their emulsions under dynamic in vitro adult and infant gastric digestion. Food Hydrocolloids, 32(2), 349–357.

    Article  CAS  Google Scholar 

  • shimoni, G., Shani Levi, C., & Levi Tal, S. L. U. (May 2016). Emulsions stabilization by lactoferrin nano-particles under in vitro digestion conditions digestion conditions. Food Hydrocolloids, 2013(33), 264–272.

    Google Scholar 

  • Singh, H., & Ye, A. (2013). Structural and biochemical factors affecting the digestion of protein-stabilized emulsions. Current Opinion in Colloid and Interface Science, 18(4), 360–370.

    Article  CAS  Google Scholar 

  • Singh, H., Ye, A., & Horne, D. (2009). Structuring food emulsions in the gastrointestinal tract to modify lipid digestion. Progress in Lipid Research, 48(2), 92–100.

    Article  CAS  PubMed  Google Scholar 

  • Skinner, W. S., Phinney, B. S., Herren, A., Goodstal, F. J., Dicely, I., & Facciotti, D. (2016). Using LC-MS based methods for testing the digestibility of a nonpurified transgenic membrane protein in simulated gastric fluid. Journal of Agricultural and Food Chemistry, 64(25), 5251–5259.

    Article  CAS  PubMed  Google Scholar 

  • Tamvakopoulos, C. (2007). Mass spectrometry for the quantification of bioactive peptides in biological fluids. Mass Spectrometry Reviews, 26(3), 389–402.

    Article  CAS  PubMed  Google Scholar 

  • Tharakan, A., Norton, I. T., Fryer, P. J., & Bakalis, S. (2010). Mass transfer and nutrient absorption in a simulated model of small intestine. Journal of Food Science, 75(6), E339–E346.

    Article  CAS  PubMed  Google Scholar 

  • Torres, D. P. M., Gonçalves, M. P. F., Teixeira, J. A., & Rodrigues, L. R. (2010). Galacto-oligosaccharides: Production, properties, applications, and significance as prebiotics. Comprehensive Reviews in Food Science and Food Safety, 9(5), 438–454.

    Article  CAS  PubMed  Google Scholar 

  • Van Loo, J., Cummings, J., Delzenne, N., Englyst, H., Franck, A., Hopkins, M., et al. (1999). Functional food properties of non-digestible oligosaccharides: A consensus report from the ENDO project (DGXII AIRII-CT94-1095). The British Journal of Nutrition, 81(2), 121–132.

    Article  PubMed  Google Scholar 

  • Verhoeckx, K. C. M., Vissers, Y. M., Baumert, J. L., Faludi, R., Feys, M., Flanagan, S., et al. (2015). Food processing and allergenicity. Food and Chemical Toxicology, 80, 223–240.

    Article  CAS  PubMed  Google Scholar 

  • Vidal, N. P., Picone, G., Goicoechea, E., Laghi, L., Manzanos, M. J., Danesi, F., et al. (2016). Metabolite release and protein hydrolysis during the in vitro digestion of cooked sea bass fillets. A study by 1H NMR. Food Research International, 88, 293–301.

    Article  CAS  Google Scholar 

  • Vimaleswaran, K. S., Le Roy, C. I., & Claus, S. P. (2015). Foodomics for personalized nutrition: How far are we? Current Opinion in Food Science, 4, 129–135.

    Article  Google Scholar 

  • Vingerhoeds, M. H., Silletti, E., de Groot, J., Schipper, R. G., & van Aken, G. A. (2009). Relating the effect of saliva-induced emulsion flocculation on rheological properties and retention on the tongue surface with sensory perception. Food Hydrocolloids, 23(3), 773–785.

    Article  CAS  Google Scholar 

  • Vors, C., Capolino, P., Guérin, C., Meugnier, E., Pesenti, S., Chauvin, M.-A., et al. (2012). Coupling in vitro gastrointestinal lipolysis and Caco-2 cell cultures for testing the absorption of different food emulsions. Food and Function, 3(5), 537.

    Article  CAS  PubMed  Google Scholar 

  • Wada, Y., & Lönnerdal, B. (2015). Bioactive peptides released from in vitro digestion of human milk with or without pasteurization. Pediatric Research, 77(4), 546–553.

    Article  CAS  PubMed  Google Scholar 

  • Wilde, P. J., & Chu, B. S. (2011). Interfacial & colloidal aspects of lipid digestion. Advances in Colloid and Interface Science, 165(1), 14–22.

    Article  CAS  PubMed  Google Scholar 

  • Ye, A., Cui, J., Dalgleish, D., & Singh, H. (2016). The formation and breakdown of structured clots from whole milk during gastric digestion. Food and Function, 7(10), 4259–4266.

    Article  CAS  PubMed  Google Scholar 

  • Ye, A., Cui, J., Dalgleish, D., & Singh, H. (2017). Effect of homogenization and heat treatment on the behavior of protein and fat globules during gastric digestion of milk. Journal of Dairy Science, 100(1), 36–47.

    Article  CAS  PubMed  Google Scholar 

  • Zabar, S., Lesmes, U., Katz, I., Shimoni, E., & Bianco-Peled, H. (2009). Studying different dimensions of amylose-long chain fatty acid complexes: Molecular, nano and micro level characteristics. Food Hydrocolloids, 23(7), 1918–1925.

    Article  CAS  Google Scholar 

  • Zabar, S., Lesmes, U., Katz, I., Shimoni, E., & Bianco-Peled, H. (2010). Structural characterization of amylose-long chain fatty acid complexes produced via the acidification method. Food Hydrocolloids, 24(4), 347–357.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri Lesmes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lesmes, U. (2019). Quantifying Digestion Products: Physicochemical Aspects. In: Gouseti, O., Bornhorst, G., Bakalis, S., Mackie, A. (eds) Interdisciplinary Approaches to Food Digestion. Springer, Cham. https://doi.org/10.1007/978-3-030-03901-1_11

Download citation

Publish with us

Policies and ethics