Skip to main content

Properties and Mechanical Behaviour of Ice

  • Chapter
  • First Online:
Ice Mechanics for Geophysical and Civil Engineering Applications

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

  • 669 Accesses

Abstract

The properties of ice and its mechanical behaviour are discussed. First, the basic facts concerning various forms of ice are presented, and relevant physical parameters are given. Then, the crystalline microstructure of ice is described, with an emphasis on the anisotropic properties of a single ice crystal and their effect on various types of its microscopic deformation. This is followed by the presentation of the macroscopic properties of polycrystalline ice and its behaviour in various stress and deformation regimes. Thus, the elastic, viscoelastic, viscous creep and brittle behaviour of the material is discussed, and examples of constitutive equations describing all these types of the response of ice to stress are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alley RB (1992) Flow-law hypotheses for ice-sheet modelling. J Glaciol 38(129):245–256

    Article  Google Scholar 

  • Ashby MF, Duval P (1985) The creep of polycrystalline ice. Cold Reg Sci Technol 11(3):285–300

    Article  Google Scholar 

  • Ashby MF, Hallam SD (1986) The failure of brittle solids containing small cracks under compressive stress-states. Acta Metall 34(3):497–510

    Article  Google Scholar 

  • Atkinson BK (ed) (1987) Fracture mechanics of rock. Academic Press, London

    Google Scholar 

  • Baral DR, Hutter K, Greve R (2001) Asymptotic theories of large-scale motion, temperature, and moisture distribution in land-based polythermal ice sheets: a critical review and new developments. Appl Mech Rev 54(3):215–256

    Article  Google Scholar 

  • Barnes P, Tabor D, Walker JCF (1971) The friction and creep of polycrystalline ice. Proc R Soc Lond A 324(1557):127–155

    Article  Google Scholar 

  • Budd WF, Jacka TH (1989) A review of ice rheology for ice sheet modelling. Cold Reg Sci Technol 16(2):107–144. https://doi.org/10.1016/0165-232X(89)90014-1

    Article  Google Scholar 

  • Colbeck SC, Evans RJ (1973) A flow law for temperate glacier ice. J Glaciol 12(64):71–86

    Article  Google Scholar 

  • Cole DM (1988) Crack nucleation in polycrystalline ice. Cold Reg Sci Technol 15(1):79–87

    Article  Google Scholar 

  • Dantl G (1969) Elastic moduli of ice. In: Riehl N, Bullemer B, Engelhardt H (eds) Physics of ice. Plenum Press, New York, pp 223–230

    Chapter  Google Scholar 

  • Doake CSM, Wolff EW (1985) Flow law for ice in polar ice sheets. Nature 314(6008):255–257

    Article  Google Scholar 

  • Duval P (1981) Creep and fabric of polycrystalline ice under shear and compression. J Glaciol 27(95):129–140

    Article  Google Scholar 

  • Duval P, Ashby MF, Anderman I (1983) Rate-controlling processes in the creep of polycrystalline ice. J Phys Chem 87(21):4066–4074

    Article  Google Scholar 

  • Duval P, Lorius C (1980) Crystal size and climatic record down to the last ice age from Antarctic ice. Earth Planet Sci Lett 48:59–64

    Article  Google Scholar 

  • Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241:376–396

    Article  Google Scholar 

  • Findley WN, Lai JS, Onaran K (1976) Creep and relaxation of nonlinear viscoelastic materials. North-Holland, Amsterdam

    Google Scholar 

  • FlĂŒgge W (1967) Viscoelasticity. Blaisdell, Toronto

    Google Scholar 

  • Gammon PH, Kiefte H, Clouter MJ, Denner WW (1983) Elastic constants of artificial and natural ice samples by Brillouin spectroscopy. J Glaciol 29(103):433–460

    Article  Google Scholar 

  • Glen JW (1955) The creep of polycrystalline ice. Proc R Soc Lond A 228(1175):519–538

    Article  Google Scholar 

  • Gold LW, Sinha NK (1980) The rheological behaviour of ice at small strains. In: Tryde P (ed) Physics and mechanics of ice, proceedings of the IUTAM Symposium, Copenhagen 1979. Springer, Berlin, pp 117–128

    Chapter  Google Scholar 

  • Goodman DJ, Frost HJ, Ashby MF (1981) The plasticity of polycrystalline ice. Philos Mag A 43(3):665–695

    Article  Google Scholar 

  • Gow AJ, Meese DA, Alley RB, Fitzpatrick JJ, Anandakrishnan S, Woods GA, Elder BC (1997) Physical and structural properties of the Greenland Ice Sheet Project 2 ice core: a review. J Geophys Res 102(C12):26559–26575. https://doi.org/10.1029/97JC00165

    Article  Google Scholar 

  • Green AE, Zerna W (1992) Theoretical elasticity. Dover, Mineola, New York

    Google Scholar 

  • Hawkes I, Mellor M (1972) Deformation and fracture of ice under uniaxial stress. J Glaciol 11(61):103–131

    Article  Google Scholar 

  • Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc A 65(389):349–354

    Article  Google Scholar 

  • Hill R (1965) Continuum micro-mechanics of elastoplastic polycrystals. J Mech Phys Solids 13(2):89–101

    Article  Google Scholar 

  • Hobbs PV (2010) Ice physics. Oxford University Press, Oxford

    Google Scholar 

  • Hutter K (1975) Floating sea ice plates and the significance of the dependence of the Poisson ratio on brine content. Proc R Soc Lond A 343(1632):85–108

    Article  Google Scholar 

  • Hutter K (1983) Theoretical glaciology. Material science of ice and the mechanics of glaciers and ice sheets. Reidel, Dordrecht

    Google Scholar 

  • Jacka TH (1984) The time and strain required for development of minimum strain rates in ice. Cold Reg Sci Technol 8(3):261–268. https://doi.org/10.1016/0165-232X(84)90057-0

    Article  Google Scholar 

  • Kamb WB (1961) The glide direction in ice. J Glaciol 3(30):1097–1106

    Article  Google Scholar 

  • Le Gac H, Duval P (1980) Constitutive relations for the non-elastic deformation of polycrystalline ice. In: Tryde P (ed) Physics and mechanics of ice, proceedings of the IUTAM symposium, Copenhagen 1979. Springer, Berlin, pp 51–59

    Google Scholar 

  • Lliboutry L (1969) The dynamics of temperate glaciers from the detailed viewpoint. J Glaciol 8(53):185–205

    Article  Google Scholar 

  • Lliboutry L, Duval P (1985) Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies. Ann Gheophys 3(2):207–224

    Google Scholar 

  • Mellor M (1980) Mechanical properties of polycrystalline ice. In: Tryde P (ed) Physics and mechanics of ice, proceedings of the IUTAM symposium, Copenhagen 1979. Springer, Berlin, pp 217–245

    Chapter  Google Scholar 

  • Mellor M, Cole DM (1982) Deformation and failure of ice under constant stress or constant strain-rate. Cold Reg Sci Technol 5(3):201–219

    Article  Google Scholar 

  • Mellor M, Cole DM (1983) Stress/strain/time relations for ice under uniaxial compression. Cold Reg Sci Technol 6(3):207–230

    Article  Google Scholar 

  • Mellor M, Testa R (1969a) Creep of ice under low stress. J Glaciol 8(52):147–152

    Article  Google Scholar 

  • Mellor M, Testa R (1969b) Effect of temperature on the creep of ice. J Glaciol 8(52):131–145

    Article  Google Scholar 

  • Morland LW (1993) The flow of ice sheets and ice shelves. In: Hutter K (ed) Continuum mechanics in environmental sciences and geophysics. Springer, Wien, pp 403–466

    Chapter  Google Scholar 

  • Morland LW (1996) Dynamic impact between a viscoelastic ice floe and a rigid structure. Cold Reg Sci Technol 24(1):7–28

    Article  Google Scholar 

  • Morland LW (2001) Influence of bed topography on steady plane ice sheet flow. In: Straughan B, Greve R, Ehrentraut H, Wang Y (eds) Continuum mechanics and applications in geophysics and the environment. Springer, Berlin, pp 276–304

    Chapter  Google Scholar 

  • Nakawo M, Sinha NK (1981) Growth rate and salinity profile of first-year ice in the high Arctic. J Glaciol 27(96):315–330

    Article  Google Scholar 

  • Nanthikesan S, Shyam Sunder S (1994) Anisotropic elasticity of polycrystalline ice Ih. Cold Reg Sci Technol 22(2):149–169

    Article  Google Scholar 

  • Nixon WA (1996) Wing crack models of the brittle compressive failure of ice. Cold Reg Sci Technol 24(1):41–55

    Article  Google Scholar 

  • Paterson WSB (1994) The physics of glaciers, 3rd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Rist MA, Sammonds PR, Oerter H, Doake CSM (2002) Fracture of Antartctic shelf ice. J Geophys Res 107(B1):ECV 2–1–ECV 2–13. https://doi.org/10.1029/2000JB000058

    Article  Google Scholar 

  • Sanderson TJO (1988) Ice mechanics. Risks to offshore structures, Graham and Trotman, London

    Google Scholar 

  • Schulson EM (2001) Brittle failure of ice. Eng Fract Mech 68(17–18):1839–1887

    Article  Google Scholar 

  • Schulson EM, Duval P (2009) Creep and fracture of ice. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Schulson EM, Fortt AL, Iliescu D, Renshaw CE (2006) Failure envelope of first-year Arctic sea ice: the role of friction in compressive fracture. J Geophys Res 111:C11S25. https://doi.org/10.1029/2005JC003234186

  • Schulson EM, Lim PN, Lee RW (1984) A brittle to ductile transition in ice under tension. Philos Mag A 49(3):353–363

    Article  Google Scholar 

  • Schwarz J, Weeks WF (1977) Engineering properties of sea ice. J Glaciol 19(81):499–531

    Article  Google Scholar 

  • Shyam Sunder S, Wu MS (1989a) A differential flow model for polycrystalline ice. Cold Reg Sci Technol 16(1):45–62

    Article  Google Scholar 

  • Shyam Sunder S, Wu MS (1989b) A multiaxial differential model of flow in orthotropic polycrystalline ice. Cold Reg Sci Technol 16(3):223–235

    Article  Google Scholar 

  • Shyam Sunder S, Wu MS (1990a) Crack nucleation due to elastic anisotropy in polycrystalline ice. Cold Reg Sci Technol 18(1):29–47

    Article  Google Scholar 

  • Shyam Sunder S, Wu MS (1990b) On the constitutive modeling of transient creep in polycrystalline ice. Cold Reg Sci Technol 18(3):267–294

    Article  Google Scholar 

  • Sinha NK (1978a) Rheology of columnar-grained ice. Exp Mech 18(12):464–470

    Article  Google Scholar 

  • Sinha NK (1978b) Short-term rheology of polycrystalline ice. J Glaciol 21(85):457–473

    Article  Google Scholar 

  • Sinha NK (1979) Grain boundary sliding in polycrystalline materials. Philos Mag A 40(6):825–842

    Article  Google Scholar 

  • Sinha NK (1983) Creep model of ice for monotonically increasing stress. Cold Reg Sci Technol 8(1):25–33

    Article  Google Scholar 

  • Sinha NK (1989) Elasticity of natural types of polycrystalline ice. Cold Reg Sci Technol 17(2):127–135

    Article  Google Scholar 

  • Sjölind SG (1985) Viscoelastic buckling analysis of floating ice sheets. Cold Reg Sci Technol 11(3):241–246

    Article  Google Scholar 

  • Sjölind SG (1987) A constitutive model for ice as a damaging visco-elastic material. Cold Reg Sci Technol 14(3):247–262

    Article  Google Scholar 

  • Smith GD, Morland LW (1981) Viscous relations for the steady creep of polycrystalline ice. Cold Reg Sci Technol 5(2):141–150

    Article  Google Scholar 

  • Spring U, Morland LW (1983) Integral representations for the viscoelastic deformation of ice. Cold Reg Sci Technol 6(3):185–193

    Article  Google Scholar 

  • Thorsteinsson T, Kipfstuhl J, Miller H (1997) Textures and fabrics in the GRIP ice core. J Geophys Res 102(C12):26583–26599. https://doi.org/10.1029/97JC00161

    Article  Google Scholar 

  • Timco GW, O’Brien S (1994) Flexural strength equation for sea ice. Cold Reg Sci Technol 22(3):285–298. https://doi.org/10.1016/0165-232X(94)90006-X

    Article  Google Scholar 

  • Timco GW, Weeks WF (2010) A review of the engineering properties of sea ice. Cold Reg Sci Technol 60(2):107–129. https://doi.org/10.1016/j.coldregions.2009.10.003

    Article  Google Scholar 

  • Treverrow A, Budd WF, Jacka TH, Warner RC (2012) The tertiary creep of polycrystalline ice: experimental evidence for stress-dependent levels of strain-rate enhancement. J Glaciol 58(208):301–314. https://doi.org/10.3189/2012JoG11J149

    Article  Google Scholar 

  • Weeks WF (2010) On sea ice. University of Alaska Press, Fairbanks

    Google Scholar 

  • Weeks WF, Assur A (1967) The mechanical properties of sea ice. USA, U.S, Army Cold Regions Research and Engineering Laboratory, Hanover, NH

    Book  Google Scholar 

  • Weertman J (1983) Creep deformation of ice. Annu Rev Earth Planet Sci 11:215–240

    Article  Google Scholar 

  • Zhan C, Evgin E, Sinha NK (1994) A three dimensional anisotropic constitutive model for ductile behaviour of columnar grained ice. Cold Reg Sci Technol 22(3):269–284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Staroszczyk .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Staroszczyk, R. (2019). Properties and Mechanical Behaviour of Ice. In: Ice Mechanics for Geophysical and Civil Engineering Applications. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-03038-4_3

Download citation

Publish with us

Policies and ethics