Skip to main content

Computational Music Archiving as Physical Culture Theory

  • Chapter
  • First Online:
Computational Phonogram Archiving

Part of the book series: Current Research in Systematic Musicology ((CRSM,volume 5))

Abstract

The framework of the Computational Music and Sound Archive (COMSAR) is discussed. The aim is to analyze and sort musical pieces of music from all over the world with computational tools. Its analysis is based on Music Information Retrieval (MIR) tools, the sorting algorithms used are Hidden-Markov models and self-organazing Kohonen maps (SOM). Different kinds of systematizations like taxonomies, self-organazing systems as well as bottom-up methods with physiological motivation are discussed, next to the basic signal-processing algorithms. Further implementations include musical instrument geometries with their radiation characteristics as measured by microphone arrays, as well as the vibrational reconstruction of these instruments using physical modeling. Practically the aim is a search engine for music which is based on musical parameters like pitch, rhythm, tonality, form or timbre using methods close to neuronal and physiological mechanisms. Still the concept also suggests a culture theory based on physical mechanisms and parameters, and therefore omits speculation and theoretical overload.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Messner, personal communication.

References

  1. Schneider A (2018) Systematic musicology: a historical interdisciplinary perspective. In: Bader R (ed) Springer handbook of systematic musicology. Springer, Heidelberg, Berlin, pp 1–24

    Google Scholar 

  2. Schneider A (2006) Comparative and systematic musicology in relation to ethnomusicology: a historical and methodological survey. Ethnomusicology 50(2):236–258

    Google Scholar 

  3. Heins E, den Otter, E, van Lamsweerde F (1994) Jaap Kunst: traditional music and its interaction with the West, KIT Publishers

    Google Scholar 

  4. Hornbostel EMV, Sachs C (1914) Systematik der Musikinstrumente. Ein Versuch. Zeitschrift für Ethnologie 46:4–5, 553–590

    Google Scholar 

  5. Sachs C (1913) Real-Lexikon der Musikinstrumente: zugleich ein Polyglossar fr das gesamte Instrumentengebiet. Bard, Berlin

    Google Scholar 

  6. Andre R (1998) Elektronische Klnge und musikalische Entdeckungen [Electronic Sounds and musical discoveries]. Reclam, Ditzingen

    Google Scholar 

  7. Schneider A (2001) Sound, pitch, and scale: from tone measurements to sonological analysis in ethnomusicology. Ethnomusicology 45(3):489–519

    Article  Google Scholar 

  8. Lomax A, Berkowitz N (1972) The evolutionary taxonomy of culture. Science 177(4045):228–239

    Article  Google Scholar 

  9. Lomax A (1976) Cantometrics: an approach to the anthropology of music. University of California Extension Media Center, Berkeley

    Google Scholar 

  10. Bader R (2013) Nonlinearities and synchronization in musical acoustics and music psychology. In: Springer series current research in systematic musicology, vol 2. Springer, Heidelberg

    Google Scholar 

  11. Kostek B (2005) Perception-based data processing in acoustics. In: Applications to music information retrieval and psychophysiology of hearing, Springer

    Google Scholar 

  12. Leman M, Carreras F (1997) Schema and gestalt: testing the hypothesis of psychoneural isomorphism by computer simulation. In: Leman M (ed) Music, gestalt, and computing studies in cognitive and systematic musicology. Springer, Berlin, pp 144–168

    Chapter  Google Scholar 

  13. Toiviainen P (ed) (2009) Musical similarity [Special issue]. Musicae Scientiae, vol 13(1 suppl)

    Google Scholar 

  14. Toiviainen P, Eerola T (2001) A method for comparative analysis of folk music based on musical feature extraction and neural networks. In: Lappalainen H (ed) Proceedings of the VII international symposium of systematic and comparative musicology and the III international conference on cognitive musicology. University of Jyvskyl, Jyvskyl, pp 41–45

    Google Scholar 

  15. Downie JS (2003) Music information retrieval. Annual Rev Inf Sci Technol 37:295–340. http://music-ir.org/downie_mir_arist37.pdf

    Article  Google Scholar 

  16. Fingerhut M (2004) Music information retrieval, or how to search for (and maybe find) music and do away with incipits. In: Proceedings IAML IASA joint congress, music and multimedia, Oslo, Aug 2004. http://www.ismir.net/admin/ismir-booklet.pdf

  17. Klapuri A, Davy M (2006) Signal processing methods for music transcription. In: Klapuri A, Davy M (ed) Signal processing. Springer, New York Inc

    Google Scholar 

  18. Alexandraki CH, Bader R (2013) Real-time concatanative synthesis for networked musical interactions. J Acoust Soc Am 133:3367

    Google Scholar 

  19. Emmanouil B, Simon D (2013) Multiple-instrument polyphonic music transcription using a temporally constrained shift-invariant model. J Acoust Soc Am 133(3):1727–1741

    Google Scholar 

  20. Rohrmeier M, Pearce M (2018) Musical syntax I: theoretical perspectives. In: Bader R (ed) Springer handbook of systematic musicology. Springer, Berlin, Heidelberg, pp 473–486

    Chapter  Google Scholar 

  21. Pearce M, Rohrmeier M (2018) Musical syntax II: empirical perspectives. In: Bader R (ed) Springer handbook of systematic musicology. Springer, Berlin, Heidelberg, pp 487–505

    Chapter  Google Scholar 

  22. Rohrmeier MA, Cross I (2014) Linking implicit and statistical learning. Modelling unsupervised online-learning of artificial grammars. Conscious Cognit Int J 27:155–167

    Google Scholar 

  23. Zucchini W, MacDonald IL (2009) Hidden-Markov models for time series. An introduction using R, Chapman & Hall

    Google Scholar 

  24. Bader R Computational mechanics of the classical guitar. Springer, Oct 2005

    Google Scholar 

  25. Gary S (2018) Delay-lines and digital waveguides. In: Bader R (ed) Springer handbook of systematic musicology. Springer, Berlin, Heidelberg, pp 259–272

    Google Scholar 

  26. Fischer J (2017) Numerical simulations of the turbulent flow and the sound field of the Turkish Ney end-blown flute. J Acoust Soc Am 141:39–60

    Article  Google Scholar 

  27. Pfeifle F (2018) Real-time signal processing on field programmable gate array hardware. In: Bader R (ed) Springer handbook of systematic musicology. Springer, Berlin, Heidelberg, pp 385–417

    Chapter  Google Scholar 

  28. Florian P, Bader, R (2015) Real-time finite-difference method physical modeling of musical instruments using field-programmable gate array hardware. J Audio Eng Soc 63(12):1001–1016

    Google Scholar 

  29. Bader R (2014) Microphone array. In: Rossing T (ed) Springer handbook of acoustics, pp 1179–1207

    Google Scholar 

  30. Thomas M (2018) Measurement techniques. In: Bader R (ed) Springer handbook of systematic musicology. Springer, Berlin, Heidelberg, pp 81–103

    Google Scholar 

  31. George B (2003) Modal analysis of the violin octet. J Acoust Soc Am 113(4):2105–2113

    Google Scholar 

  32. Plath N (2013) High-speed camera displacement measurement (HCDM) technique of string vibrations. In: Proceedings of the Stockholm music acoustics conference, pp 188–192

    Google Scholar 

  33. Copeland P (2008) Manual of analogue sound restoration techniques. The British Library, London

    Google Scholar 

  34. Elschek O et al (2001) Digitizing world music. Digitalisierung von Weltmusik. Special issue, Systematische Musikwissenschaft/Systematic Musicology, vol VII, no 3

    Google Scholar 

  35. Proutskova P (2007) Musical memory of the world data infrastructure in ethnomusicological archives. In: Proceedings of the 8th international conference on music information retrieval (ISMIR), Vienna, Austria

    Google Scholar 

  36. The National Recording Preservation Board of the Library of Congress (2010) The state of recorded sound preservation in the United States: a national legacy at risk in the digital age. Washington, D.C. Council on Library and Information Resources and The Library of Congress

    Google Scholar 

  37. The National Recording Preservation Board of the Library of Congress (2012) The library of congress national recording preservation plan. Washington, D.C. Council on Library and Information Resources and The Library of Congress

    Google Scholar 

  38. Kolinski M (1978) The structure of music: diversification versus constraint. Ethnomusicology 22(2):229–244

    Article  Google Scholar 

  39. Gmez E, Herrera P, Gmez-Martin F (2013) Compuational ethnomusicology: perspectives and challenges. J New Music Res 42(2):111–112

    Article  Google Scholar 

  40. Pisczcalski M, Geller B (1977) Automatic music transcription. Comput Music J 1(4):24–31

    Google Scholar 

  41. Klapuri A (2004) Signal processing methods for the automatic transcription of music. PhD dissertation, Tampere University of Technology

    Google Scholar 

  42. Goto M (2001) An audio-based real-time beat tracking system for music with or without drum-sounds. J New Music Res 30(2):159–171

    Article  Google Scholar 

  43. Klapuri A (1999) Sound onset detection by applying psychoacoustic knowledge. In: 1999 IEEE international conference on acoustics speech and signal processing proceedings, ICASSP99 Cat No99CH36258 6, pp 3089–3092

    Google Scholar 

  44. Dessein A, Cont A, Lemaitre G (2010) Real-time polyphonic music transcription with non-negative matrix factorization and beta-divergence. In: Proceedings of the 11th international society for music information retrieval conference (ISMIR), pp 489–494

    Google Scholar 

  45. Foote J (2000) Automatic audio segmentation using a measure of audio novelty. In: Proceedings ICME ’00

    Google Scholar 

  46. Foote J, Cooper M (2003) Media segmentation using self-similarity decomposition. In: Proceedings of SPIE storage and retrieval for multimedia databases, vol 5021

    Google Scholar 

  47. Six J, Cornelis O, Leman M (2013) Tarsos, a modular platform for precise pitch analysis of western and non-western music. J New Music Res 42(2):113–129

    Article  Google Scholar 

  48. Dixon S (2006) Onset detection revisited. In: Proceedings of the international conference on digital audio effects DAFx06, pp 133–137

    Google Scholar 

  49. Goto M (2001) A predominant-f0 estimation method for real-world musical audio signals: MAP estimation for incorporating prior knowledge about f0s and tone models. In: Proceedings workshop on consistent and reliable acoustic cues for sound, pp 1–4

    Google Scholar 

  50. Bader R (2011) Buddhism, animism, and entertainment in Cambodian melismatic chanting SMOT. In: Schneider A, von Ruschkowski A (eds) Hamburg yearbook of musicology, vol 28

    Google Scholar 

  51. Chai W, Vercoe B (2003) Structural analysis of musical signals for indexing and thumbnailing. In: Proceedings ACM/IEEE joint conference on digital libraries

    Google Scholar 

  52. Gibiat V, Castellengo M (2000) Period doubling occurences in wind instruments musical performance. Acustica 86:746–754

    Google Scholar 

  53. Leman M (1995) Music and schema theory. Springer, Berlin

    Chapter  Google Scholar 

  54. Rabiner LR, Juang BH (1993) Fundamentals of speech recognition, Prentice Hall Signal Processing Series

    Google Scholar 

  55. Aucouturier J-J, Sandler M (2001) Segmentation of musical signals using hidden Markov models. In: Proceedings of the audio engineering society 110th convention

    Google Scholar 

  56. Bader R (2018) Springer handbook of systematic musicology. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  57. Fletcher N, Rossing THD (2000) Physics of musical instruments. Springer, Heidelberg

    Google Scholar 

  58. Rossing THD (2010) Science of stringed instruments. Springer, New York, Heidelberg

    Book  Google Scholar 

  59. Rossing Thomas D (2000) Science of percussion instruments. World Scientific, Singapore

    Book  Google Scholar 

  60. Bader R, Hansen U (2008) Acoustical analysis and modeling of musical instruments using modern signal processing methods. In: Havelock D, Vorlnder M, Kuwano S (eds) Handbook of signal processing in acoustics. Springer, pp 219–247

    Google Scholar 

  61. Sadie S (1984) The new grove dictionary of musical instruments, vol 2. Macmillan Press Limited

    Google Scholar 

  62. Woodhouse J, Alluzzo PM (2004) The bowed string as we know it today. Acta Acustica United with Acustica 90:579–589

    Google Scholar 

  63. Woodhouse J, Schumacher RT (1995) The transient behaviour of models of bowed-string motion. Chaos 5:509–523

    Article  Google Scholar 

  64. Heintze D (2011) Lounúet. Notizen zum neuirländischen Reibidiophon. [Lounúet. Notes about the friction idiophone from New Ireland.]. In: Deterts D, Heintze D, Seybold S (eds) Musik—Ethnologie—Museum. Überseemuesum Bremen, Schünemann, Freundesgabe für Andreas Lüderwaldt. Jahrbuch XVII, pp 69–104

    Google Scholar 

  65. Messner F (1998) Friction blocks of New Ireland. In: Kaeppler AL, Love JW (eds) Garland encyclopedia of world music. Australia and the Pacific Islands, vol 9. Routledge, London, pp 380–382

    Google Scholar 

  66. Messner GF (1980) Das Reibholz von New Ireland. Manu Taga Kul Kas...’ (Der “Vogel” singt noch...) [The friction wood from New Ireland. Manu Taga Kul Kas...’ (The ‘bird’ still sings...)]. Studien zur Musikwissenschaft, Band 31, pp 221–312

    Google Scholar 

  67. Wolf D (2010) Bamarische Musik. Yodaya Lieder im kulturell-historischen Kontext Myanmars [Bama music. Yodaya songs in the cultural-historical context of Myanmar.] regiospectra-Verlag Berlin

    Google Scholar 

  68. Zaw UK (1981) Burmese culture, general and particular. Sarpay Beikman, Printing and Publishing Corporation, Ministry of Information, Rangoon

    Google Scholar 

  69. Sathej G, Adhikari R (2009) The Eigen spectra of Indian musical drums. J Acoust Soc Am 126(2):831–838

    Article  Google Scholar 

  70. Worland R (2011) Demonstration of coupled membrane modes on a musical drum. J Acoust Soc Am 130:2397

    Article  Google Scholar 

  71. Nickerson LM, Rossing ThD (1999) Acoustics of the Karen bronze drums. J Acoust Soc Am 106:2254

    Article  Google Scholar 

  72. Worland R (2010) Normal modes of a musical drum head under non-uniform tension. J Acoust Soc Am 127(1):525–533

    Article  Google Scholar 

  73. Hwang Y-F, Suzuki H (2016) A finite-element analysis on the free vibration of Japanese drum wood barrels under material property uncertainty. Acoust Sci Tech 37(3):115–122

    Article  Google Scholar 

  74. Bader R (2006) Finite-element calculation of a bass drum. J Acoust Soc Am 119:3290

    Article  Google Scholar 

  75. Suzuki H, Miamoto Y (2012) Resonance frequency changes of Japanese drum (nagado daiko) diaphragms due to temperature, humidity, and aging. Acoust Sci Tech 33(4):277–278

    Article  Google Scholar 

  76. Jeyapalina S (2004) Studies of the hydro-thermal and viscoelastic properties of leather. Univ of Leichester, PhD

    Google Scholar 

  77. Bilbao S (2012) Time-domain simulation and sound synthesis for the snare drum. J Acoust Soc Am 131(1):914–925

    Article  Google Scholar 

  78. Wriggers P (2001) Nichtlineare finite-element methoden. [Nonlinear Finite-Element Methods], Springer

    Google Scholar 

  79. Pierce A (2010) Intrinsic damping, relaxation processes, and internal friction in vibrating systems. POMA 9:1–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Bader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bader, R. (2019). Computational Music Archiving as Physical Culture Theory. In: Bader, R. (eds) Computational Phonogram Archiving. Current Research in Systematic Musicology, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-02695-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02695-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02694-3

  • Online ISBN: 978-3-030-02695-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics