Advertisement

A Framework to Objectively Identify Reference Regions for Normalizing Quantitative Imaging

  • Amir Fazlollahi
  • Scott Ayton
  • Pierrick Bourgeat
  • Ibrahima Diouf
  • Parnesh Raniga
  • Jurgen Fripp
  • James Doecke
  • David Ames
  • Colin L. Masters
  • Christopher C. Rowe
  • Victor L. Villemagne
  • Ashley I. Bush
  • Olivier Salvado
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11070)

Abstract

The quantitative use of medical images often requires an intensity scaling with respect to the signal from a well-characterized anatomical region of interest. The choice of such a region often varies between studies which can substantially influence the quantification, resulting in study bias hampering objective findings which are detrimental to open science. This study outlines a list of criteria and a statistical ranking approach for identifying normalization region of interest. The proposed criteria include (i) associations between reference region and demographics such as age, (ii) diagnostic group differences in the reference region, (iii) correlation between reference and primary areas of interest, (iv) local variance in the reference region, and (v) longitudinal reproducibility of the target regions when normalized. The proposed approach has been used to establish an optimal normalization region of interest for the analysis of Quantitative Susceptibility Mapping (QSM) of Magnetic Resonance Imaging (MRI). This was achieved by using cross-sectional data from 119 subjects with normal cognition, mild cognitive impairment, and Alzheimer’s disease as well as and 19 healthy elderly individuals with longitudinal data. For the QSM application, we found that normalizing by the white matter regions not only satisfies the criteria but it also provides the best separation between clinical groups for deep brain nuclei target regions.

Keywords

Quantification Reference region Normalization QSM 

References

  1. 1.
    Dore, V., et al.: CapAIBL: automated reporting of cortical PET quantification without need of MRI on brain surface using a patch-based method. In: Wu, G., Coupé, P., Zhan, Y., Munsell, B.C., Rueckert, D. (eds.) Patch-MI 2016. LNCS, vol. 9993, pp. 109–116. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47118-1_14CrossRefGoogle Scholar
  2. 2.
    Brendel, M., et al.: Improved longitudinal [18F]-AV45 amyloid PET by white matter reference and VOI-based partial volume effect correction. NeuroImage 108, 450–459 (2015)CrossRefGoogle Scholar
  3. 3.
    Yakushev, I., et al.: Choice of reference area in studies of Alzheimer’s disease using positron emission tomography with fluorodeoxyglucose-F18. Psychiatr. Res. Neuroimaging 164(2), 143–153 (2008)CrossRefGoogle Scholar
  4. 4.
    Dukart, J., et al.: Differential effects of global and cerebellar normalization on detection and differentiation of dementia in FDG-PET studies. NeuroImage 49(2), 1490–1495 (2010)CrossRefGoogle Scholar
  5. 5.
    Mattsson, N., et al.: Association of brain amyloid-β with cerebral perfusion and structure in Alzheimer’s disease and mild cognitive impairment. Brain 137, 1550–1561 (2014)CrossRefGoogle Scholar
  6. 6.
    Alsop, D.C., Casement, M., de Bazelaire, C., Fong, T., Press, D.Z.: Hippocampal hyperperfusion in Alzheimer’s disease. NeuroImage 42(4), 1267–1274 (2008)CrossRefGoogle Scholar
  7. 7.
    Alsop, D.C., Detre, J.A., Grossman, M.: Assessment of cerebral blood flow in Alzheimer’s disease by spin-labeled magnetic resonance imaging. Ann. Neurol. 47(1), 93–100 (2000)CrossRefGoogle Scholar
  8. 8.
    Acosta-Cabronero, J., Williams, G.B., Cardenas-Blanco, A., Arnold, R.J., Lupson, V., Nestor, P.J.: In vivo quantitative susceptibility mapping (QSM) in Alzheimer’s disease. PLoS ONE 8(11), e81093 (2013)CrossRefGoogle Scholar
  9. 9.
    Acosta-Cabronero, J., Betts, M.J., Cardenas-Blanco, A., Yang, S., Nestor, P.J.: In vivo MRI mapping of brain iron deposition across the adult lifespan. J. Neurosci. 36(2), 364–374 (2016)CrossRefGoogle Scholar
  10. 10.
    Langkammer, C., et al.: Quantitative susceptibility mapping (QSM) as a means to measure brain iron? a post mortem validation study. Neuroimage 62(3–2), 1593–1599 (2012)CrossRefGoogle Scholar
  11. 11.
    Straub, S., et al.: Suitable reference tissues for quantitative susceptibility mapping of the brain. Magn. Reson. Med. 78(1), 204–214 (2017)CrossRefGoogle Scholar
  12. 12.
    Feng, X., Deistung, A., Reichenbach, J.R.: Quantitative susceptibility mapping (QSM) and R2* in the human brain at 3T: evaluation of intra-scanner repeatability. Z. Med. Phys. 28(1), 36–48 (2018)CrossRefGoogle Scholar
  13. 13.
    Lacalle-Aurioles, M., et al.: Is the cerebellum the optimal reference region for intensity normalization of perfusion MR studies in early Alzheimer’s disease? PLoS ONE 8(12), e81548 (2013)CrossRefGoogle Scholar
  14. 14.
    Borghammer, P., Aanerud, J., Gjedde, A.: Data-driven intensity normalization of PET group comparison studies is superior to global mean normalization. NeuroImage 46(4), 981–988 (2009)CrossRefGoogle Scholar
  15. 15.
    Dukart, J., et al.: Reference cluster normalization improves detection of frontotemporal lobar degeneration by means of FDG-PET. PLoS ONE 8(2), e55415 (2013)CrossRefGoogle Scholar
  16. 16.
    Koch, K.M., Papademetris, X., Rothman, D.L., de Graaf, R.A.: Rapid calculations of susceptibility-induced magnetostatic field perturbations for in vivo magnetic resonance. Phys. Med. Biol. 51(24), 6381–6402 (2006)CrossRefGoogle Scholar
  17. 17.
    Fazlollahi, A., et al.: A normalisation framework for quantitative brain imaging; application to quantitative susceptibility mapping. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 97–100 (2017)Google Scholar
  18. 18.
    Schwarz, C.G., et al.: Optimizing PiB-PET SUVR change-over-time measurement by a large-scale analysis of longitudinal reliability, plausibility, separability, and correlation with MMSE. NeuroImage 144, 113–127 (2017)CrossRefGoogle Scholar
  19. 19.
    Yakushev, I., et al.: SPM-based count normalization provides excellent discrimination of mild Alzheimer’s disease and amnestic mild cognitive impairment from healthy aging. NeuroImage 44(1), 43–50 (2009)CrossRefGoogle Scholar
  20. 20.
    Ellis, K.A., et al.: The Australian imaging, biomarkers and lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int. Psychogeriatr. 21(4), 672–687 (2009)CrossRefGoogle Scholar
  21. 21.
    Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1), 273–289 (2002)CrossRefGoogle Scholar
  22. 22.
    Salat, D.H., et al.: Regional white matter volume differences in nondemented aging and Alzheimer’s disease. NeuroImage 44(4), 1247–1258 (2009)CrossRefGoogle Scholar
  23. 23.
    Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 897–908 (1999)CrossRefGoogle Scholar
  24. 24.
    Li, W., Avram, A.V., Wu, B., Xiao, X., Liu, C.: Integrated Laplacian-based phase unwrapping and background phase removal for quantitative susceptibility mapping. NMR Biomed. 27(2), 219–227 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Amir Fazlollahi
    • 1
    • 2
  • Scott Ayton
    • 3
    • 4
  • Pierrick Bourgeat
    • 1
  • Ibrahima Diouf
    • 1
  • Parnesh Raniga
    • 1
  • Jurgen Fripp
    • 1
  • James Doecke
    • 1
    • 2
  • David Ames
    • 5
  • Colin L. Masters
    • 3
    • 4
  • Christopher C. Rowe
    • 4
    • 5
  • Victor L. Villemagne
    • 4
    • 5
  • Ashley I. Bush
    • 3
    • 4
  • Olivier Salvado
    • 1
    • 2
  1. 1.CSIRO Health and BiosecurityBrisbaneAustralia
  2. 2.Cooperative Research Centre for Mental HealthParkvilleAustralia
  3. 3.Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
  4. 4.The University of MelbourneParkvilleAustralia
  5. 5.Austin HealthHeidelbergAustralia

Personalised recommendations