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Abstract. The quantitative use of medical images often requires an intensity
scaling with respect to the signal from a well-characterized anatomical region of
interest. The choice of such a region often varies between studies which can
substantially influence the quantification, resulting in study bias hampering
objective findings which are detrimental to open science. This study outlines a
list of criteria and a statistical ranking approach for identifying normalization
region of interest. The proposed criteria include (i) associations between refer-
ence region and demographics such as age, (ii) diagnostic group differences in
the reference region, (iii) correlation between reference and primary areas of
interest, (iv) local variance in the reference region, and (v) longitudinal repro-
ducibility of the target regions when normalized. The proposed approach has
been used to establish an optimal normalization region of interest for the
analysis of Quantitative Susceptibility Mapping (QSM) of Magnetic Resonance
Imaging (MRI). This was achieved by using cross-sectional data from 119
subjects with normal cognition, mild cognitive impairment, and Alzheimer’s
disease as well as and 19 healthy elderly individuals with longitudinal data. For
the QSM application, we found that normalizing by the white matter regions not
only satisfies the criteria but it also provides the best separation between clinical
groups for deep brain nuclei target regions.
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1 Introduction

Emerging quantitative medical imaging techniques have become a promising research
tool for investigating metabolic, functional, and molecular properties of tissues. An
accurate quantification of neuroimaging data such as Magnetic Resonance Imaging
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(MRI), Computed Tomography (CT) or Positron Emission Tomography (PET), often
requires intensity scaling or normalization. The intensity normalization aims at
accounting for global variations between subjects as well as uncontrolled biological,
experimental, and imaging factors that might otherwise bias the results. A ratio of the
measured signal to a pre-defined reference region is one common normalization
method. Indeed, various normalization regions have been utilized in amyloid PET [1,
2], 18F-FDG PET [3, 4], arterial spin labeling MRI [5–7], quantitative susceptibility
mapping (QSM) [8–12] or dynamic susceptibility contrast [13]. An ideal reference
region should be spared from pathology in the disorder under study, should have non-
specific associations (saturable) to the imaging method and should have a stable
measurement. Seldom can a consensus normalization region be established as it
depends on the disease, cohort, age, and imaging parameters or tracers, resulting in
unwanted variability in reported outcomes [6, 8, 9], even using the same imaging
modality and/or pathological cohort.

Intensity normalization methods scale the image by computing the ratio of regions
of interest (ROI) values to the average of all voxels within a reference region [1, 2, 5, 9]
or a cluster of regions [14, 15]. Intensity normalization aims to reduce measurement
variability caused by uncontrolled physiological differences among subjects and
imaging techniques. The ideal approach for normalization depends on the underlying
source of the variability. Using QSM as an example in this paper, the magnetic sus-
ceptibility (i.e. v) is inferred from a dipole kernel operation, which, due to the zero
value in the origin of the kernel in the Fourier domain (DC component), leads to an
arbitrary baseline intensity shift in the reconstructed image [16]. Therefore, intensity
normalization using a reference region is essential to address this global shift before
reporting and comparing QSM findings. Previous studies reported the use of different
reference regions including the cerebrospinal fluid (CSF) of the posterior ventricles [8,
11], posterior white-matter (WM) with lower variance across subjects [9], middle
frontal WM [17], occipital WM [10], and whole brain or cortical grey-matter [12].

Previous studies established a series of objective criteria for a normalization region
which included between- and intra-diagnostic-group differences [3, 11, 13, 17, 18] and
associations with age and disease stage in a reference region [11, 17, 19]. However,
these analyses were limited to the previously reported list of potential reference regions
and the decision was made based on qualitative approaches.

Given the lack of consensus on the choice of the reference region, the existence of a
range of imaging modalities and disorders, the current work aims to outline a general
framework for identifying objectively a reference region throughout the brain. A series
of quantitative criteria are proposed, which were evaluated for QSM-MRI modalities
on a cross-sectional and longitudinal cohort of individuals with dementia and normal
ageing. The outcome from each criterion was ranked and combined to produce a single
rating metric for each region. A power analysis was performed to evaluate the impact of
utilizing each reference region on detecting between diagnostic-group differences.
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2 Method

2.1 Dataset

Two subsets of data based on the availability of cross-sectional and longitudinal QSM-
MRI from the Australian Imaging Biomarkers and Lifestyle (AIBL) were included
[20]. For the cross-sectional analysis, 119 QSM scans comprised of 69 cognitively
normal (CN), 22 mild cognitive impairment (MCI) and 28 Alzheimer’s disease (AD).
For longitudinal analysis, a baseline and 18-month follow-up QSM scans for 19 CN
subjects without ApoE-e4 alleles, Clinical Dementia Rating (CDR) = 0, Mini-Mental
State Examination (MMSE) > 28 were included. Detailed demographic information is
provided in Table 1.

2.2 Image Acquisition

MRI images were acquired on a 3T Siemens Tim Trio scanner with a 12-channel head
coil. Subjects underwent anatomical T1-weighted (T1 W), gradient echo (GRE). The
T1 W images were acquired using a standard 3D MPRAGE sequence with
1 � 1�1 mm3 resolution, TR/TE/TI = 1900/2.55/900 ms, flip angle 9°, field of view
256 � 256, and 160 slices. 3D GRE images used for QSM were acquired with
0.93 � 0.93 mm in-plane resolution and 1.75 mm slice thickness, repetition time/echo
time of 27/20 ms, flip angle 20° and field of view 240 � 256, and 80 slices.

2.3 Image Post-processing

T1-weighted MPRAGE data were segmented into 73 grey-matter (GM) and 32 white-
matter (WM) regions by segmentation propagation of an atlas database which had been
previously parcellated using the Neuromorphometrics (63 subjects) [21] and FreeSurfer
(FS) WM parcellation [22], respectively. The Neuromorphometrics and FS parcella-
tions were then refined by the CSF, GM and WM segmentations obtained using the
expectation maximization segmentation algorithm [23] directly applied to the T1-
weighted images.

Table 1. Demographic information CDR: Clinical dementia rating, MMSE: Mini-mental state
examination

Cross-sectional Longitudinal (Age, MMSE and CDR at
baseline)

# Age MMSE CDR Sex(F/M) # Age Sex(F/M) MMSE CDR

CN 69 74.2 ± 7.3 29 ± 1 0.05 ± 0.2 37/32 19 73.2 ± 6.6 10/9 29.3 + 0.7 0

MCI 22 77.8 ± 5.4 27 ± 2 0.5 ± 0 12/10 – – – – –

AD 28 74.6 ± 9.3 21 ± 6 1.3 ± 2.1 15/13 – – – – –

A Framework to Objectively Identify Reference Regions 67



In order to reconstruct QSM images, phase offsets between each channel of the coil
were removed by weighting the magnitude of the corresponding channel, and then
combined to form a single-phase image. STI Suite software (version 2.2) was used for
QSM dipole inversion process [24].

2.4 Reference Region Analysis

For this analysis, 100 reference regions including whole brain, CSF, WM, GM and 65
sub-regions from GM and 31 sub-regions from WM were used. As primary regions
neocortex, frontal, parietal, temporal, occipital and hippocampus were considered. For
each reference or primary region, a mean value for QSM was computed. To be able to
combine statistical models, age and the regional mean values were scaled to zero mean
and unit variance. A list of proposed criteria to identify a reliable reference region is as
follows:

C1. Reference region association with subject demographics such as age and sex:
there should be no or minimal association. This criterion was tested based on the b
coefficient and standard error (SE) from a linear model with reference region as the
dependent variable and subject demographics as covariates (lower b and SE are
preferred for each covariate).
C2. Reference region diagnostic-group separation effect (e.g. between CN and
MCI/AD participants): there should be no or minimal group differences. Any sig-
nificant group effect in the reference region, e.g. MCI vs. AD, could impose a group
difference when looking at the primary regions and therefore bias the normalized
values. This was tested based on the b coefficient and SE from a linear model with
reference region as the dependent variable, and diagnostic groups (CN, MCI and
AD) as a covariate (lower b and SE are preferred for each covariate).
C3. Reference region correlation with other primary areas of interest e.g.
cortical/subcortical regions: there should be a positive or negative association. The
undesired change in the image is a global effect meaning that the measured values
(both in the reference and target regions) are dependent. This was tested based on
the b coefficient and SE from a linear model with the primary region as the
dependent variable and reference region as independent variable while adjusting for
age and gender (higher b and lower SE are preferred for the independent variable).
C4. Reference region signal variations: there should be a minimum variance.
A lower variance in the reference region (of both CN and MCI/AD participants)
shows the stability of the measurement as being unaffected by the pathology or a
minimal contamination from neighboring structures (e.g. vessels) as well as other
physiological or uncontrolled study confounds. This was tested by computing
coefficient of variation (CV) where CV = standard deviation/mean (lower CV value
is preferred).
C5. Longitudinal reproducibility of the primary region when normalized: there
should be an improved reproducibility. Linear mixed models were used to assess
the relationship between reference and primary regions over the two-time points
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controlled for age and gender modelled as QSM * Age*Gender + Region/Time +
(1|ID). A lower b and SE are preferred for the Time (measured in years/months) by
region interaction indicating little change between the reference region and the
region of interest over time.

To combine all the criteria and obtain a single value representing the goodness-of-
reference for normalization, the outcome of each criterion was ranked to 0 to 1 (higher
the better) and then averaged to create a composite score. The Cohen’s D metric was
used as well to compute the overall performance of each reference region in terms of
improving the diagnostic accuracy (MCI and AD compared to CN) as previously
employed by [3, 4, 19].

3 Results

The top 5 reference regions (out of 100), when used for normalizing the primary
regions of interest, are shown in Table 2. The average SE for reference regions (not
shown here) were very similar and not significantly different. A comparison of pre-
viously reported reference regions and proposed top-ranked regions from Table 2 (first
row) is shown in Fig. 1.

The Middle Frontal White Matter area had the best composite scores and ranked
first overall from all the 100 areas considered for the normalization of QSM to study
Alzheimer’s disease.

Table 2. Top 5 reference regions when used for normalizing regions of interest. GM: gray
matter, WM: white-matter, Sup.: superior, Mid.: Middle, Orbi.: Orbital, Front.: Frontal, Post.:
Posterior, Ant.: Anterior, Occp.: Occipital

Ranked
reference

GM regions of interest

Neocortex Middle frontal Parietal Middle
temporal

Occipital Hippocampus

1st Sup. Temp. GM Front. Pole WM Orbi. Gyrus
GM

Orbi. Gyrus
GM

Mid. Fron.
WM

Mid. Fron.
WM

2nd Mid. Fron.
WM

Mid. Fron.
WM

Mid. Fron.
WM

Mid. Fron.
WM

Supramaginal
WM

Sup. Temp. GM

3rd Orbi. Gyrus GM Sup. Temp. GM Post. Cing.
GM

Post. Cing.
GM

Insula WM Occp. Pole GM

4th Mid. Occp. GM Supramaginal
WM

Supramaginal
WM

Ant. Orbi.
GM

Postcentral
WM

Post. Cing. GM

5th Supramaginal
WM

Angular Gyrus
GM

Postcentral
WM

Mid.
Occp. GM

Lingual gyrus
WM

Supramaginal
WM
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4 Discussion

This study proposed an objective framework for identifying a suitable reference region
for intensity normalization with the purpose of removing global uncontrolled variations
in quantitative images.

We argue in this paper that the selection of a normalization region should be done
using objective and open criteria. This would allow fairer comparison between reported
results removing doubts about introducing unwanted bias in the processing and
interpretation. Furthermore, we also argue that the normalization regions should be
dependent on the data acquisition and application. In our example, to study Alzhei-
mer’s disease, it would be important that the normalization region does not introduce
group difference, and the area that ranked first would be different if another target
region (than the neocortex) was under investigation. However, our study shows that
one reference region (i.e. Mid Frontal WM) ranked highly overall when investigating
multiple brain regions.

Our method is a data-driven approach and as such results ought to be investigated,
to avoid spurious selection that would have no justification for the application at hand.
Indeed, in our QSM application, the orbital gyrus GM had a better effect size
improvement to separate AD from CN, however, in terms of pathophysiology and its
lower score for the other criteria do not support it as a suitable choice. This highlights
the benefit of having a set of criteria instead of investigating only one (e.g. effect size in
this case).

Fig. 1. Performance (in term of effect size) of previously reported reference regions and top-
ranked region using the proposed method. A higher composite score (y-axis) represents a more
suitable reference region based on the proposed criteria.

70 A. Fazlollahi et al.



5 Conclusion

Normalization is essential for removing global modulation effects, and consequently
improving the sensitivity of quantitative imaging in detecting disease-specific differ-
ences. This study proposed a systematic approach to objectively identify a suitable
reference region and evaluated it on QSM-MRI data to identify the Mid Frontal WM as
the best normalization area for investigating neocortical QSM signal.
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