Skip to main content

Study of Crack Patterns of Fiber-Reinforced Concrete (FRC) Specimens Subjected to Static and Fatigue Testings Using CT-Scan Technology

  • Chapter
  • First Online:
Short Fibre Reinforced Cementitious Composites and Ceramics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 95))

  • 479 Accesses

Abstract

This paper demonstrates the widely accepted hypothesis that the compressive testing is a particular case of a cyclic test where failure occurs during the first cycle. To perform this, a test on 32 fiber-reinforced high-performance concrete specimens have been carried out. Sixteen of them have been tested under low-cycle fatigue compressive loading up to failure. Eight of them have been tested under monotonic compressive loading, until failure too. And the last eight specimens have remained intact. All of them have been scanned using a Computed Tomography (CT) Scan in order to define the pattern of their damage, which includes voids and cracks. The results show that the average damage maps of monotonic and fatigue series are statistically identical, which confirms the hypothesis previously described. In addition, both series are different to the intact series, which means that not a random damage distribution occurs when specimens collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aas-Jackobsen, K.: Fatigue of concrete beams and columns. Ph.D. thesis, University of Trondheim (1970)

    Google Scholar 

  2. Bordelon, A.C., Roesler, J.R.: Spatial distribution of synthetic fibers in concrete with x-ray computed tomography. Cement Concr. Compos. 53, 35–43 (2014). https://doi.org/10.1016/j.cemconcomp.2014.04.007

    Article  CAS  Google Scholar 

  3. Herrmann, H., Pastorelli, E., Kallonen, A., Suuronen, J.P.: Methods for fibre orientation analysis of x-ray tomography images of steel fibre reinforced concrete (SFRC). J. Mater. Sci. 51(8), 3772–3783 (2016). https://doi.org/10.1007/s10853-015-9695-4

    Article  CAS  Google Scholar 

  4. Hsu, T.: J. Am. Concr. Inst. 78(4), 192–305 (1981)

    Google Scholar 

  5. Oesch, T.S., Landis, E.N., Kuchma, D.A.: Conventional concrete and UHPC performance–damage relationships identified using computed tomography. J. Eng. Mech. 142(12), 04016101 (2016)

    Article  Google Scholar 

  6. Pastorelli, E., Herrmann, H.: Virtual reality visualization for short fibre orientation analysis. In: 2014 14th Biennial Baltic Electronic Conference (BEC), pp. 201–204 (2014). https://doi.org/10.1109/BEC.2014.7320591

  7. Petkovic, G., Lenschow, R., Stemland, H., Rosseland, S.: Fatigue of high strength concrete. ACI Spec. Publ. 121(25), 505–525 (1990)

    CAS  Google Scholar 

  8. Pittino, G., Geier, G., Fritz, L., Hadwiger, M., Rosc, J., Pabel, T.: Computertomografische untersuchung von stahlfaserspritzbeton mit mehrdimensionalen transferfunktionen. Beton- und Stahlbetonbau 106(6), 364–370 (2011). https://doi.org/10.1002/best.201100009

    Article  Google Scholar 

  9. Ponikiewski, T., Katzer, J., Bugdol, M., Rudzki, M.: Steel fibre spacing in self-compacting concrete precast walls by x-ray computed tomography. Mater. Struct. 48(12), 3863–3874 (2015a). https://doi.org/10.1617/s11527-014-0444-y

    Article  Google Scholar 

  10. Ponikiewski, T., Katzer, J., Bugdol, M., Rudzki, M.: X-ray computed tomography harnessed to determine 3D spacing of steel fibres in self compacting concrete (SCC) slabs. Constr. Build. Mater. 74, 102–108 (2015b). https://doi.org/10.1016/j.conbuildmat.2014.10.024

    Article  Google Scholar 

  11. Przybilla, C., Fernández-Cantelli, A., Castillo, E.: Deriving the primary cumulative distributive function of fracture stress for brittle materials from 3- and 4-point bending tests. J. Eur. Ceram. Soc. 31, 451–460 (2011)

    Article  CAS  Google Scholar 

  12. Saucedo, L., Yu, R., Medeiros, A., Zhang, X., Ruiz, G.: A probabilistic fatigue model based on the initial distribution to consider frequency effect in plain and fiber reinforced concrete. Int. J. Fatigue 48, 308–318 (2013)

    Article  Google Scholar 

  13. Schnell, J., Schladitz, K., Schuler, F.: Richtungsanalyse von fasern in betonen auf basis der computer-tomographie. Beton- und Stahlbetonbau 105(2), 72–77 (2010). https://doi.org/10.1002/best.200900055

    Article  Google Scholar 

  14. Suuronen, J.P., Kallonen, A., Eik, M., Puttonen, J., Serimaa, R., Herrmann, H.: Analysis of short fibres orientation in steel fibre reinforced concrete (SFRC) using x-ray tomography. J. Mater. Sci. 48(3), 1358–1367 (2013). https://doi.org/10.1007/s10853-012-6882-4

    Article  CAS  Google Scholar 

  15. Tepfers, R., Kutti, T.: Fatigue strength of plain, ordinary and lightweight concrete. J. Am. Concr. Inst. 76(5), 635–652 (1979)

    Google Scholar 

  16. Vicente, M., Minguez, J., González, D.: The use of computed tomography to explore the microstructure of materials in civil engineering: from rocks to concrete. In: Halefoglu, D.A.M. (ed.) Computed Tomography-Advanced Applications. InTech (2017). https://doi.org/10.5772/intechopen.69245

    Google Scholar 

  17. Vicente, M.A., González, D.C., Mínguez, J.: Determination of dominant fibre orientations in fibre-reinforced high-strength concrete elements based on computed tomography scans. Nondestruct. Test. Eval. 29(2), 164–182 (2014). https://doi.org/10.1080/10589759.2014.914204

    Article  CAS  Google Scholar 

  18. Zhang, B., Phillips, D., Wu, K.: Effects of loading frequency and stress reversal on fatigue life of plain concrete. Mag. Concr. Res. 48(4), 292–305 (1996)

    Google Scholar 

  19. Zhao, D., Chang, Q., Yang, J., Song, Y.: A new model for fatigue life distribution of concrete. Key Eng. Mater. 348–349, 201–204 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Ministerio de Economía y Competitividad BIA2015-686678-C2-R, Spain, Junta de Comunidades de Castilla – La Mancha, Spain, Fondo Europeo de Desarrollo Regional, gran PEII-2014-016-P and INCRECYT Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Vicente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vicente, M.A., Ruiz, G., González, D.C., Mínguez, J., Tarifa, M., Zhang, X. (2019). Study of Crack Patterns of Fiber-Reinforced Concrete (FRC) Specimens Subjected to Static and Fatigue Testings Using CT-Scan Technology. In: Herrmann, H., Schnell, J. (eds) Short Fibre Reinforced Cementitious Composites and Ceramics. Advanced Structured Materials, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-030-00868-0_1

Download citation

Publish with us

Policies and ethics