Skip to main content

Clinical Management of One-Lung Ventilation

  • Chapter
  • First Online:
Principles and Practice of Anesthesia for Thoracic Surgery

Abstract

One-lung ventilation (OLV) is a recognized and modifiable risk factor for acute lung injury. OLV needs to be individualized to the patient’s predicted body weight and their particular lung mechanics. Protective OLV is a combination of small, physiologic tidal volumes with consequently low ventilating pressures and routine, individualized PEEP to facilitate open lung ventilation. Ventilator-induced lung injury is preventable by minimizing driving pressure, which is a direct correlate of transpulmonary stress and strain. In patients at particular risk of lung injury, the use of permissive hypercapnia may facilitate a decrease in the mechanical strain onto the lung. Hypoxemia during one-lung ventilation is now rare and often secondary to alveolar de-recruitment in the face of hypoventilation. Management of hypoxemia requires a structured treatment algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brodsky JB. The evolution of thoracic anesthesia. Thorac Surg Clin. 2005;15(1):1–10.

    Article  PubMed  Google Scholar 

  2. Lohser J. Evidence-based management of one-lung ventilation. Anesthesiol Clin. 2008;26(2):241–72. v

    Article  PubMed  Google Scholar 

  3. Zeldin RA, Normandin D, Landtwing D, Peters RM. Postpneumonectomy pulmonary edema. J Thorac Cardiovasc Surg. 1984;87(3):359–65.

    CAS  PubMed  Google Scholar 

  4. Licker M, Fauconnet P, Villiger Y, Tschopp JM. Acute lung injury and outcomes after thoracic surgery. Curr Opin Anaesthesiol. 2009;22(1):61–7.

    Article  PubMed  Google Scholar 

  5. Dulu A, Pastores SM, Park B, Riedel E, Rusch V, Halpern NA. Prevalence and mortality of acute lung injury and ARDS after lung resection. Chest. 2006;130(1):73–8.

    Article  PubMed  Google Scholar 

  6. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3):818–24.

    Article  CAS  PubMed  Google Scholar 

  7. Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, et al. The berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012;38(10):1573–82.

    Article  PubMed  Google Scholar 

  8. Licker M, de Perrot M, Spiliopoulos A, Robert J, Diaper J, Chevalley C, Tschopp J-M. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg. 2003;97(6):1558–65.

    PubMed  Google Scholar 

  9. Ruffini E, Parola A, Papalia E, Filosso PL, Mancuso M, Oliaro A, et al. Frequency and mortality of acute lung injury and acute respiratory distress syndrome after pulmonary resection for bronchogenic carcinoma. Eur J Cardiothorac Surg. 2001;20(1):30–6. discussion 36-7

    Article  CAS  PubMed  Google Scholar 

  10. Kutlu CA, Williams EA, Evans TW, Pastorino U, Goldstraw P. Acute lung injury and acute respiratory distress syndrome after pulmonary resection. Ann Thorac Surg. 2000;69(2):376–80.

    Article  CAS  PubMed  Google Scholar 

  11. Della Rocca G, Coccia C. Acute lung injury in thoracic surgery. Curr Opin Anaesthesiol. 2013;26(1):40–6.

    Article  PubMed  Google Scholar 

  12. Tang SS, Redmond K, Griffiths M, Ladas G, Goldstraw P, Dusmet M. The mortality from acute respiratory distress syndrome after pulmonary resection is reducing: a 10-year single institutional experience. Eur J Cardiothorac Surg. 2008;34(4):898–902.

    Article  PubMed  Google Scholar 

  13. Jordan S, Mitchell JA, Quinlan GJ, Goldstraw P, Evans TW. The pathogenesis of lung injury following pulmonary resection. Eur Respir J. 2000;15(4):790–9.

    Article  CAS  PubMed  Google Scholar 

  14. Tremblay LN, Slutsky AS. Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med. 2006;32(1):24–33.

    Article  PubMed  Google Scholar 

  15. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338(6):347–54.

    Article  CAS  PubMed  Google Scholar 

  16. Determann RM, Royakkers A, Wolthuis EK, Vlaar AP, Choi G, Paulus F, et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit Care. 2010;14(1):R1.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gajic O, Frutos-Vivar F, Esteban A, Hubmayr RD, Anzueto A. Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intensive Care Med. 2005;31(7):922–6.

    Article  PubMed  Google Scholar 

  18. Gajic O, Dara SI, Mendez JL, Adesanya AO, Festic E, Caples SM, et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004;32(9):1817–24.

    Article  PubMed  Google Scholar 

  19. Neto AS, Simonis FD, Barbas CS, Biehl M, Determann RM, Elmer J, et al. Lung-protective ventilation with low tidal volumes and the occurrence of pulmonary complications in patients without acute respiratory distress syndrome: a systematic review and individual patient data analysis. Crit Care Med. 2015;43(10):2155–63.

    Article  PubMed  Google Scholar 

  20. Silva PL, Negrini D, MacĂªdo Rocco PR. Mechanisms of ventilator-induced lung injury in healthy lungs. Best Pract Res Clin Anaesthesiol. 2015;29(3):301–13.

    Article  PubMed  Google Scholar 

  21. Serpa Neto A, Hemmes SN, Barbas CS, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery: a systematic review and meta-analysis. Lancet Respir Med. 2014;2(12):1007–15.

    Article  PubMed  Google Scholar 

  22. Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369(5):428–37.

    Article  CAS  PubMed  Google Scholar 

  23. Hemmes SN, Serpa Neto A, Schultz MJ. Intraoperative ventilatory strategies to prevent postoperative pulmonary complications: a meta-analysis. Curr Opin Anaesthesiol. 2013;26(2):126–33.

    Article  PubMed  Google Scholar 

  24. Serpa Neto A, Hemmes SNT, Barbas CSV, Beiderlinden M, Biehl M, Binnekade JM, et al. Protective versus conventional ventilation for surgery. Anesthesiology. 2015;123(1):66–78.

    Article  PubMed  Google Scholar 

  25. Levin MA, McCormick PJ, Lin HM, Hosseinian L, Fischer GW. Low intraoperative tidal volume ventilation with minimal PEEP is associated with increased mortality. Br J Anaesth. 2014;113(1):97–108.

    Article  CAS  PubMed  Google Scholar 

  26. Yang M, Ahn HJ, Kim K, Kim JA, Yi CA, Kim MJ, Kim HJ. Does a protective ventilation strategy reduce the risk of pulmonary complications after lung cancer surgery?: a randomized controlled trial. Chest. 2011;139(3):530–7.

    Article  PubMed  Google Scholar 

  27. Blank RS, Colquhoun DA, Durieux ME, Kozower BD, McMurry TL, Bender SP, Naik BI. Management of one-lung ventilation: impact of tidal volume on complications after thoracic surgery. Anesthesiology. 2016;124(6):1286–95.

    Article  PubMed  Google Scholar 

  28. Shen B. Low tidal volume ventilation in the operating room— where are we now? Anesthesia Patient Safety Foundation Newsletter. 2016:1–4.

    Google Scholar 

  29. Lohser J, Slinger P. Lung injury after one-lung ventilation: a review of the pathophysiologic mechanisms affecting the ventilated and the collapsed lung. Anesth Analg. 2015;121(2):302–18.

    Article  PubMed  Google Scholar 

  30. Padley SP, Jordan SJ, Goldstraw P, Wells AU, Hansell DM. Asymmetric ARDS following pulmonary resection: CT findings initial observations. Radiology. 2002;223(2):468–73.

    Article  PubMed  Google Scholar 

  31. Yin K, Gribbin E, Emanuel S, Orndorff R, Walker J, Weese J, Fallahnejad M. Histochemical alterations in one lung ventilation. J Surg Res. 2007;137(1):16–20.

    Article  CAS  PubMed  Google Scholar 

  32. Kozian A, Schilling T, Fredén F, Maripuu E, Röcken C, Strang C, et al. One-lung ventilation induces hyperperfusion and alveolar damage in the ventilated lung: an experimental study. Br J Anaesth. 2008;100(4):549–59.

    Article  CAS  PubMed  Google Scholar 

  33. Funakoshi T, Ishibe Y, Okazaki N, Miura K, Liu R, Nagai S, Minami Y. Effect of re-expansion after short-period lung collapse on pulmonary capillary permeability and pro-inflammatory cytokine gene expression in isolated rabbit lungs. Br J Anaesth. 2004;92(4):558–63.

    Article  CAS  PubMed  Google Scholar 

  34. Schilling T, Kozian A, Huth C, BĂ¼hling F, Kretzschmar M, Welte T, Hachenberg T. The pulmonary immune effects of mechanical ventilation in patients undergoing thoracic surgery. Anesth Analg. 2005;101(4):957–65. table of contents

    Article  PubMed  Google Scholar 

  35. Michelet P, D'Journo XB, Roch A, Doddoli C, Marin V, Papazian L, et al. Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology. 2006;105(5):911–9.

    Article  PubMed  Google Scholar 

  36. SentĂ¼rk M. New concepts of the management of one-lung ventilation. Curr Opin Anaesthesiol. 2006;19(1):1–4.

    Article  PubMed  Google Scholar 

  37. De Conno E, Steurer MP, Wittlinger M, Zalunardo MP, Weder W, Schneiter D, et al. Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology. 2009;110(6):1316–26.

    Article  PubMed  CAS  Google Scholar 

  38. Giraud O, Molliex S, Rolland C, Leçon-Malas V, Desmonts JM, Aubier M, Dehoux M. Halogenated anesthetics reduce interleukin-1beta-induced cytokine secretion by rat alveolar type II cells in primary culture. Anesthesiology. 2003;98(1):74–81.

    Article  CAS  PubMed  Google Scholar 

  39. Erturk E, Topaloglu S, Dohman D, Kutanis D, BeÅŸir A, Demirci Y, et al. The comparison of the effects of sevoflurane inhalation anesthesia and intravenous propofol anesthesia on oxidative stress in one lung ventilation. Biomed Res Int. 2014;2014:360936.

    PubMed  PubMed Central  Google Scholar 

  40. Chappell D, Heindl B, Jacob M, Annecke T, Chen C, Rehm M, et al. Sevoflurane reduces leukocyte and platelet adhesion after ischemia-reperfusion by protecting the endothelial glycocalyx. Anesthesiology. 2011;115(3):483–91.

    Article  CAS  PubMed  Google Scholar 

  41. Casanova J, Simon C, Vara E, Sanchez G, Rancan L, Abubakra S, et al. Sevoflurane anesthetic preconditioning protects the lung endothelial glycocalyx from ischemia reperfusion injury in an experimental lung autotransplant model. J Anesth. 2016;30(5):755–62.

    Article  PubMed  Google Scholar 

  42. Schilling T, Kozian A, Kretzschmar M, Huth C, Welte T, BĂ¼hling F, et al. Effects of propofol and desflurane anaesthesia on the alveolar inflammatory response to one-lung ventilation. Br J Anaesth. 2007;99(3):368–75.

    Article  CAS  PubMed  Google Scholar 

  43. Schilling T, Kozian A, Senturk M, Huth C, Reinhold A, Hedenstierna G, Hachenberg T. Effects of volatile and intravenous anesthesia on the alveolar and systemic inflammatory response in thoracic surgical patients. Anesthesiology. 2011;115(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  44. Cohen E. Management of one-lung ventilation. Anesthesiol Clin North Am. 2001;19(3):475–95. vi

    Article  CAS  PubMed  Google Scholar 

  45. Brodsky JB, Fitzmaurice B. Modern anesthetic techniques for thoracic operations. World J Surg. 2001;25(2):162–6.

    Article  CAS  PubMed  Google Scholar 

  46. BENDIXEN HH, HEDLEY-WHYTE J, LAVER MB. Impaired oxygenation in surgical patients during general anesthesia with controlled ventilation. A concept of atelectasis. N Engl J Med. 1963;269:991–6.

    Article  CAS  PubMed  Google Scholar 

  47. Katz JA, Laverne RG, Fairley HB, Thomas AN. Pulmonary oxygen exchange during endobronchial anesthesia: effect of tidal volume and PEEP. Anesthesiology. 1982;56(3):164–71.

    Article  CAS  PubMed  Google Scholar 

  48. Flacke JW, Thompson DS, Read RC. Influence of tidal volume and pulmonary artery occlusion on arterial oxygenation during endobronchial anesthesia. South Med J. 1976;69(5):619–26.

    Article  CAS  PubMed  Google Scholar 

  49. Kozian A, Schilling T, SchĂ¼tze H, Senturk M, Hachenberg T, Hedenstierna G. Ventilatory protective strategies during thoracic surgery: effects of alveolar recruitment maneuver and low-tidal volume ventilation on lung density distribution. Anesthesiology. 2011;114(5):1025–35.

    Article  PubMed  Google Scholar 

  50. van der Werff YD, van der Houwen HK, Heijmans PJ, Duurkens VA, Leusink HA, van Heesewijk HP, de Boer A. Postpneumonectomy pulmonary edema. A retrospective analysis of incidence and possible risk factors. Chest. 1997;111(5):1278–84.

    Article  PubMed  Google Scholar 

  51. FernĂ¡ndez-PĂ©rez ER, Keegan MT, Brown DR, Hubmayr RD, Gajic O. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology. 2006;105(1):14–8.

    Article  PubMed  Google Scholar 

  52. Neustein S. Association of high tidal volume with postpneumonectomy failure. Anesthesiology. 2007;106(4):875–6.

    Article  PubMed  Google Scholar 

  53. Jeon K, Yoon JW, Suh GY, Kim J, Kim K, Yang M, et al. Risk factors for post-pneumonectomy acute lung injury/acute respiratory distress syndrome in primary lung cancer patients. Anaesth Intensive Care. 2009;37(1):14–9.

    CAS  PubMed  Google Scholar 

  54. Gama de Abreu M, Heintz M, Heller A, Széchényi R, Albrecht DM, Koch T. One-lung ventilation with high tidal volumes and zero positive end-expiratory pressure is injurious in the isolated rabbit lung model. Anesth Analg. 2003;96(1):220–8. table of contents.

    Article  PubMed  Google Scholar 

  55. Kuzkov VV, Suborov EV, Kirov MY, Kuklin VN, Sobhkhez M, Johnsen S, et al. Extravascular lung water after pneumonectomy and one-lung ventilation in sheep. Crit Care Med. 2007;35(6):1550–9.

    Article  PubMed  Google Scholar 

  56. Qutub H, El-Tahan MR, Mowafi HA, El Ghoneimy YF, Regal MA, Al Saflan AA. Effect of tidal volume on extravascular lung water content during one-lung ventilation for video-assisted thoracoscopic surgery: a randomised, controlled trial. Eur J Anaesthesiol. 2014;31:466.

    Article  PubMed  Google Scholar 

  57. Chiumello D, Pristine G, Slutsky AS. Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;160(1):109–16.

    Article  CAS  PubMed  Google Scholar 

  58. Cepkova M, Brady S, Sapru A, Matthay MA, Church G. Biological markers of lung injury before and after the institution of positive pressure ventilation in patients with acute lung injury. Crit Care. 2006;10(5):R126.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Parsons PE, Eisner MD, Thompson BT, Matthay MA, Ancukiewicz M, Bernard GR, et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med. 2005;33(1):1–6. discussion 230-2

    Article  CAS  PubMed  Google Scholar 

  60. Wrigge H, Uhlig U, Zinserling J, Behrends-Callsen E, Ottersbach G, Fischer M, et al. The effects of different ventilatory settings on pulmonary and systemic inflammatory responses during major surgery. Anesth Analg. 2004;98(3):775–81.

    Article  PubMed  Google Scholar 

  61. Boyle NH, Pearce A, Hunter D, Owen WJ, Mason RC. Intraoperative scanning laser doppler flowmetry in the assessment of gastric tube perfusion during esophageal resection. J Am Coll Surg. 1999;188(5):498–502.

    Article  CAS  PubMed  Google Scholar 

  62. Licker M, Diaper J, Villiger Y, Spiliopoulos A, Licker V, Robert J, Tschopp JM. Impact of intraoperative lung-protective interventions in patients undergoing lung cancer surgery. Crit Care. 2009;13(2):R41.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tusman G, Böhm SH, Sipmann FS, Maisch S. Lung recruitment improves the efficiency of ventilation and gas exchange during one-lung ventilation anesthesia. Anesth Analg. 2004;98(6):1604–9. table of contents

    Article  PubMed  Google Scholar 

  64. Hoftman N, Eikermann E, Shin J, Buckley J, Navab K, Abtin F, et al. Utilizing forced vital capacity to predict low lung compliance and select intraoperative tidal volume during thoracic surgery. Anesth Analg. 2017;125:1922.

    Article  PubMed  Google Scholar 

  65. Schultz MJ, Haitsma JJ, Slutsky AS, Gajic O. What tidal volumes should be used in patients without acute lung injury? Anesthesiology. 2007;106(6):1226–31.

    Article  PubMed  Google Scholar 

  66. Klingstedt C, Hedenstierna G, Baehrendtz S, Lundqvist H, Strandberg A, Tokics L, Brismar B. Ventilation-perfusion relationships and atelectasis formation in the supine and lateral positions during conventional mechanical and differential ventilation. Acta Anaesthesiol Scand. 1990;34(6):421–9.

    Article  CAS  PubMed  Google Scholar 

  67. Mase K, Noguchi T, Tagami M, Imura S, Tomita K, Monma M, et al. Compression of the lungs by the heart in supine, side-lying, semi-prone positions. J Phys Ther Sci. 2016;28(9):2470–3.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ducros L, Moutafis M, Castelain MH, Liu N, Fischler M. Pulmonary air trapping during two-lung and one-lung ventilation. J Cardiothorac Vasc Anesth. 1999;13(1):35–9.

    Article  CAS  PubMed  Google Scholar 

  69. Slinger PD, Hickey DR. The interaction between applied PEEP and auto-peep during one-lung ventilation. J Cardiothorac Vasc Anesth. 1998;12(2):133–6.

    Article  CAS  PubMed  Google Scholar 

  70. Caramez MP, Borges JB, Tucci MR, Okamoto VN, Carvalho CR, Kacmarek RM, et al. Paradoxical responses to positive end-expiratory pressure in patients with airway obstruction during controlled ventilation. Crit Care Med. 2005;33(7):1519–28.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Putensen C, Wrigge H. Tidal volumes in patients with normal lungs: one for all or the less, the better? Anesthesiology. 2007;106(6):1085–7.

    Article  PubMed  Google Scholar 

  72. Slinger PD, Kruger M, McRae K, Winton T. Relation of the static compliance curve and positive end-expiratory pressure to oxygenation during one-lung ventilation. Anesthesiology. 2001;95(5):1096–102.

    Article  CAS  PubMed  Google Scholar 

  73. Valenza F, Ronzoni G, Perrone L, Valsecchi M, Sibilla S, Nosotti M, et al. Positive end-expiratory pressure applied to the dependent lung during one-lung ventilation improves oxygenation and respiratory mechanics in patients with high FEV1. Eur J Anaesthesiol. 2004;21(12):938–43.

    Article  CAS  PubMed  Google Scholar 

  74. Ren Y, Peng ZL, Xue QS, Yu BW. The effect of timing of application of positive end-expiratory pressure on oxygenation during one-lung ventilation. Anaesth Intensive Care. 2008;36(4):544–8.

    CAS  PubMed  Google Scholar 

  75. Bardoczky GI, d'Hollander AA, Cappello M, Yernault JC. Interrupted expiratory flow on automatically constructed flow-volume curves may determine the presence of intrinsic positive end-expiratory pressure during one-lung ventilation. Anesth Analg. 1998;86(4):880–4.

    Article  CAS  PubMed  Google Scholar 

  76. Henderson WR, Chen L, Amato MB, Brochard LJ. Fifty years of research in ARDS. Respiratory mechanics in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;196:822.

    Article  PubMed  Google Scholar 

  77. Tusman G, Böhm SH. Prevention and reversal of lung collapse during the intra-operative period. Best Pract Res Clin Anaesthesiol. 2010;24(2):183–97.

    Article  PubMed  Google Scholar 

  78. Ferrando C, Mugarra A, Gutierrez A, Carbonell JA, García M, Soro M, et al. Setting individualized positive end-expiratory pressure level with a positive end-expiratory pressure decrement trial after a recruitment maneuver improves oxygenation and lung mechanics during one-lung ventilation. Anesth Analg. 2014;118(3):657–65.

    Article  PubMed  Google Scholar 

  79. Misthos P, Katsaragakis S, Theodorou D, Milingos N, Skottis I. The degree of oxidative stress is associated with major adverse effects after lung resection: a prospective study. Eur J Cardiothorac Surg. 2006;29(4):591–5.

    Article  PubMed  Google Scholar 

  80. Douzinas EE, Kollias S, Tiniakos D, Evangelou E, Papalois A, Rapidis AD, et al. Hypoxemic reperfusion after 120 mins of intestinal ischemia attenuates the histopathologic and inflammatory response. Crit Care Med. 2004;32(11):2279–83.

    Article  PubMed  Google Scholar 

  81. Duggan M, Kavanagh BP. Atelectasis in the perioperative patient. Curr Opin Anaesthesiol. 2007;20(1):37–42.

    Article  PubMed  Google Scholar 

  82. Bardoczky GI, Szegedi LL, dHollander AA, Moures JM, de Francquen P, Yernault JC. Two-lung and one-lung ventilation in patients with chronic obstructive pulmonary disease: the effects of position and fio2. Anesth Analg. 2000;90(1):35.

    Article  CAS  PubMed  Google Scholar 

  83. Ko R, McRae K, Darling G, Waddell TK, McGlade D, Cheung K, et al. The use of air in the inspired gas mixture during two-lung ventilation delays lung collapse during one-lung ventilation. Anesth Analg. 2009;108(4):1092–6.

    Article  PubMed  Google Scholar 

  84. Edmark L, Kostova-Aherdan K, Enlund M, Hedenstierna G. Optimal oxygen concentration during induction of general anesthesia. Anesthesiology. 2003;98(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  85. Kregenow DA, Rubenfeld GD, Hudson LD, Swenson ER. Hypercapnic acidosis and mortality in acute lung injury. Crit Care Med. 2006;34(1):1–7.

    Article  PubMed  Google Scholar 

  86. Lang CJ, Barnett EK, Doyle IR. Stretch and CO2 modulate the inflammatory response of alveolar macrophages through independent changes in metabolic activity. Cytokine. 2006;33(6):346–51.

    Article  CAS  PubMed  Google Scholar 

  87. Sticher J, MĂ¼ller M, Scholz S, Schindler E, Hempelmann G. Controlled hypercapnia during one-lung ventilation in patients undergoing pulmonary resection. Acta Anaesthesiol Scand. 2001;45(7):842–7.

    Article  CAS  PubMed  Google Scholar 

  88. Zollinger A, Zaugg M, Weder W, Russi EW, Blumenthal S, Zalunardo MP, et al. Video-assisted thoracoscopic volume reduction surgery in patients with diffuse pulmonary emphysema: gas exchange and anesthesiological management. Anesth Analg. 1997;84(4):845–51.

    Article  CAS  PubMed  Google Scholar 

  89. Morisaki H, Serita R, Innami Y, Kotake Y, Takeda J. Permissive hypercapnia during thoracic anaesthesia. Acta Anaesthesiol Scand. 1999;43(8):845–9.

    Article  CAS  PubMed  Google Scholar 

  90. Balanos GM, Talbot NP, Dorrington KL, Robbins PA. Human pulmonary vascular response to 4 h of hypercapnia and hypocapnia measured using Doppler echocardiography. J Appl Physiol (1985). 2003;94(4):1543–51.

    Article  Google Scholar 

  91. Robinson RJ, Shennib H, Noirclerc M. Slow-rate, high-pressure ventilation: a method of management of difficult transplant recipients during sequential double lung transplantation for cystic fibrosis. J Heart Lung Transplant. 1994;13(5):779–84.

    CAS  PubMed  Google Scholar 

  92. Szegedi LL, Barvais L, Sokolow Y, Yernault JC, d'Hollander AA. Intrinsic positive end-expiratory pressure during one-lung ventilation of patients with pulmonary hyperinflation. Influence of low respiratory rate with unchanged minute volume. Br J Anaesth. 2002;88(1):56–60.

    Article  CAS  PubMed  Google Scholar 

  93. Slinger PD, Lesiuk L. Flow resistances of disposable double-lumen, single-lumen, and univent tubes. J Cardiothorac Vasc Anesth. 1998;12(2):142–4.

    Article  CAS  PubMed  Google Scholar 

  94. FernĂ¡ndez-PĂ©rez ER, Sprung J, Afessa B, Warner DO, Vachon CM, Schroeder DR, et al. Intraoperative ventilator settings and acute lung injury after elective surgery: a nested case control study. Thorax. 2009;64(2):121–7.

    Article  PubMed  Google Scholar 

  95. Chiumello D, Carlesso E, Brioni M, Cressoni M. Airway driving pressure and lung stress in ARDS patients. Crit Care. 2016;20:276.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Helwani MA, Saied NN. Intraoperative plateau pressure measurement using modern anesthesia machine ventilators. Can J Anaesth. 2013;60(4):404–6.

    Article  PubMed  Google Scholar 

  97. Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–55.

    Article  CAS  PubMed  Google Scholar 

  98. Neto AS, Hemmes SNT, Barbas CSV, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016;4(4):272–80.

    Article  PubMed  Google Scholar 

  99. Nichols D, Haranath S. Pressure control ventilation. Crit Care Clin. 2007;23(2):183–99. viii-ix

    Article  PubMed  Google Scholar 

  100. TuÄŸrul M, Camci E, Karadeniz H, SentĂ¼rk M, Pembeci K, Akpir K. Comparison of volume controlled with pressure controlled ventilation during one-lung anaesthesia. Br J Anaesth. 1997;79(3):306–10.

    Article  PubMed  Google Scholar 

  101. SentĂ¼rk NM, Dilek A, Camci E, SentĂ¼rk E, Orhan M, TuÄŸrul M, Pembeci K. Effects of positive end-expiratory pressure on ventilatory and oxygenation parameters during pressure-controlled one-lung ventilation. J Cardiothorac Vasc Anesth. 2005;19(1):71–5.

    Article  PubMed  Google Scholar 

  102. Unzueta MC, Casas JI, Moral MV. Pressure-controlled versus volume-controlled ventilation during one-lung ventilation for thoracic surgery. Anesth Analg. 2007;104(5):1029–33. tables of contents

    Article  PubMed  Google Scholar 

  103. Leong LM, Chatterjee S, Gao F. The effect of positive end expiratory pressure on the respiratory profile during one-lung ventilation for thoracotomy. Anaesthesia. 2007;62(1):23–6.

    Article  CAS  PubMed  Google Scholar 

  104. Choi YS, Shim JK, Na S, Hong SB, Hong YW, Oh YJ. Pressure-controlled versus volume-controlled ventilation during one-lung ventilation in the prone position for robot-assisted esophagectomy. Surg Endosc. 2009;23(10):2286–91.

    Article  PubMed  Google Scholar 

  105. Heimberg C, Winterhalter M, StrĂ¼ber M, Piepenbrock S, Bund M. Pressure-controlled versus volume-controlled one-lung ventilation for MIDCAB. Thorac Cardiovasc Surg. 2006;54(8):516–20.

    Article  CAS  PubMed  Google Scholar 

  106. Pardos PC, Garutti I, Piñeiro P, Olmedilla L, de la Gala F. Effects of ventilatory mode during one-lung ventilation on intraoperative and postoperative arterial oxygenation in thoracic surgery. J Cardiothorac Vasc Anesth. 2009;23(6):770–4.

    Google Scholar 

  107. Ihra G, Gockner G, Kashanipour A, Aloy A. High-frequency jet ventilation in european and north american institutions: developments and clinical practice. Eur J Anaesthesiol. 2000;17(7):418–30.

    Article  CAS  PubMed  Google Scholar 

  108. Abe K, Oka J, Takahashi H, Funatsu T, Fukuda H, Miyamoto Y. Effect of high-frequency jet ventilation on oxygenation during one-lung ventilation in patients undergoing thoracic aneurysm surgery. J Anesth. 2006;20(1):1–5.

    Article  PubMed  Google Scholar 

  109. KnĂ¼ttgen D, Zeidler D, Vorweg M, Doehn M. Unilateral high-frequency jet ventilation supporting one-lung ventilation during thoracic surgical procedures. Anaesthesist. 2001;50(8):585–9.

    Article  PubMed  Google Scholar 

  110. Durkin C, Lohser J. Oxygenation and ventilation strategies for patients undergoing lung resection surgery after prior lobectomy or pneumonectomy. Curr Anesthesiol Rep. 2016;6(2):135–41.

    Article  Google Scholar 

  111. Misiolek H, Knapik P, Swanevelder J, Wyatt R, Misiolek M. Comparison of double-lung jet ventilation and one-lung ventilation for thoracotomy. Eur J Anaesthesiol. 2008;25(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  112. Buise M, van Bommel J, van Genderen M, Tilanus H, van Zundert A, Gommers D. Two-lung high-frequency jet ventilation as an alternative ventilation technique during transthoracic esophagectomy. J Cardiothorac Vasc Anesth. 2009;23(4):509–12.

    Article  PubMed  Google Scholar 

  113. Lentz CW, Peterson HD. Smoke inhalation is a multilevel insult to the pulmonary system. Curr Opin Pulm Med. 1997;3(3):221–6.

    Article  CAS  PubMed  Google Scholar 

  114. Reper P, Dankaert R, van Hille F, van Laeke P, Duinslaeger L, Vanderkelen A. The usefulness of combined high-frequency percussive ventilation during acute respiratory failure after smoke inhalation. Burns. 1998;24(1):34–8.

    Article  CAS  PubMed  Google Scholar 

  115. Velmahos GC, Chan LS, Tatevossian R, Cornwell EE, Dougherty WR, Escudero J, Demetriades D. High-frequency percussive ventilation improves oxygenation in patients with ARDS. Chest. 1999;116(2):440–6.

    Article  CAS  PubMed  Google Scholar 

  116. Lucangelo U, Antonaglia V, Zin WA, Confalonieri M, Borelli M, Columban M, et al. High-frequency percussive ventilation improves perioperatively clinical evolution in pulmonary resection. Crit Care Med. 2009;37(5):1663–9.

    Article  PubMed  Google Scholar 

  117. Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol. 1970;28(5):596–608.

    Article  CAS  PubMed  Google Scholar 

  118. Duggan M, McCaul CL, McNamara PJ, Engelberts D, Ackerley C, Kavanagh BP. Atelectasis causes vascular leak and lethal right ventricular failure in uninjured rat lungs. Am J Respir Crit Care Med. 2003;167(12):1633–40.

    Article  PubMed  Google Scholar 

  119. Tusman G, Böhm SH, Suarez-Sipmann F. Dead space during one-lung ventilation. Curr Opin Anesthesiol. 2015;28(1):10–7.

    Article  Google Scholar 

  120. Cinnella G, Grasso S, Natale C, Sollitto F, Cacciapaglia M, Angiolillo M, et al. Physiological effects of a lung-recruiting strategy applied during one-lung ventilation. Acta Anaesthesiol Scand. 2008;52(6):766–75.

    Article  CAS  PubMed  Google Scholar 

  121. Vieillard-Baron A, Charron C, Jardin F. Lung recruitment or lung overinflation maneuvers? Intensive Care Med. 2006;32(1):177–8.

    Article  PubMed  Google Scholar 

  122. Garutti I, Martinez G, Cruz P, Piñeiro P, Olmedilla L, de la Gala F. The impact of lung recruitment on hemodynamics during one-lung ventilation. J Cardiothorac Vasc Anesth. 2009;23(4):506–8.

    Article  PubMed  Google Scholar 

  123. Koh WJ, Suh GY, Han J, Lee SH, Kang EH, Chung MP, et al. Recruitment maneuvers attenuate repeated derecruitment-associated lung injury. Crit Care Med. 2005;33(5):1070–6.

    Article  PubMed  Google Scholar 

  124. Suh GY, Koh Y, Chung MP, An CH, Kim H, Jang WY, et al. Repeated derecruitments accentuate lung injury during mechanical ventilation. Crit Care Med. 2002;30(8):1848–53.

    Article  PubMed  Google Scholar 

  125. Farias LL, Faffe DS, Xisto DG, Santana MC, Lassance R, Prota LF, et al. Positive end-expiratory pressure prevents lung mechanical stress caused by recruitment/derecruitment. J Appl Physiol (1985). 2005;98(1):53–61.

    Article  Google Scholar 

  126. Meade MO, Cook DJ, Griffith LE, Hand LE, Lapinsky SE, Stewart TE, et al. A study of the physiologic responses to a lung recruitment maneuver in acute lung injury and acute respiratory distress syndrome. Respir Care. 2008;53(11):1441–9.

    PubMed  Google Scholar 

  127. Sivrikoz MC, TunçözgĂ¼r B, Cekmen M, Bakir K, Meram I, Koçer E, et al. The role of tissue reperfusion in the reexpansion injury of the lungs. Eur J Cardiothorac Surg. 2002;22(5):721–7.

    Article  PubMed  Google Scholar 

  128. Ojima H, Kuwano H, Kato H, Miyazaki T, Nakajima M, Sohda M, Tsukada K. Relationship between cytokine response and temporary ventilation during one-lung ventilation in esophagectomy. Hepato-Gastroenterology. 2007;54(73):111–5.

    CAS  PubMed  Google Scholar 

  129. Hansen LK, Koefoed-Nielsen J, Nielsen J, Larsson A. Are selective lung recruitment maneuvers hemodynamically safe in severe hypovolemia? An experimental study in hypovolemic pigs with lobar collapse. Anesth Analg. 2007;105(3):729–34.

    Article  PubMed  Google Scholar 

  130. Mahfood S, Hix WR, Aaron BL, Blaes P, Watson DC. Reexpansion pulmonary edema. Ann Thorac Surg. 1988;45(3):340–5.

    Article  CAS  PubMed  Google Scholar 

  131. Tekinbas C, Ulusoy H, Yulug E, Erol MM, Alver A, Yenilmez E, et al. One-lung ventilation: for how long? J Thorac Cardiovasc Surg. 2007;134(2):405–10.

    Article  PubMed  Google Scholar 

  132. Fernandez-Bustamante A, Wood CL, Tran ZV, Moine P. Intraoperative ventilation: incidence and risk factors for receiving large tidal volumes during general anesthesia. BMC Anesthesiol. 2011;11:22.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Hurford WE, Kolker AC, Strauss HW. The use of ventilation/perfusion lung scans to predict oxygenation during one-lung anesthesia. Anesth. 1987;67(5):841–3.

    Article  CAS  Google Scholar 

  134. Slinger P, Suissa S, Adam J, Triolet W. Predicting arterial oxygenation during one-lung ventilation with continuous positive airway pressure to the nonventilated lung. J Cardiothorac Anesth. 1990;4(4):436–40.

    Article  CAS  PubMed  Google Scholar 

  135. Yamamoto Y, Watanabe S, Kano T. Gradient of bronchial end-tidal CO2 during two-lung ventilation in lateral decubitus position is predictive of oxygenation disorder during subsequent one-lung ventilation. J Anesth. 2009;23(2):192–7.

    Article  PubMed  Google Scholar 

  136. Fukuoka N, Iida H, Akamatsu S, Nagase K, Iwata H, Dohi S. The association between the initial end-tidal carbon dioxide difference and the lowest arterial oxygen tension value obtained during one-lung anesthesia with propofol or sevoflurane. J Cardiothorac Vasc Anesth. 2009;23(6):775–9.

    Article  CAS  PubMed  Google Scholar 

  137. Brodsky JB, Lemmens HJ. Left double-lumen tubes: clinical experience with 1,170 patients. J Cardiothorac Vasc Anesth. 2003;17(3):289–98.

    Article  PubMed  Google Scholar 

  138. Ehrenfeld JM, Walsh JL, Sandberg WS. Right- and left-sided mallinckrodt double-lumen tubes have identical clinical performance. Anesth Analg. 2008;106(6):1847–52.

    Article  PubMed  Google Scholar 

  139. Baraka AS, Taha SK, Yaacoub CI. Alarming hypoxemia during one-lung ventilation in a patient with respiratory bronchiolitis-associated interstitial lung disease. Can J Anesth. 2003;50(4):411–4.

    Article  PubMed  Google Scholar 

  140. Russell WJ. Intermittent positive airway pressure to manage hypoxia during one-lung anaesthesia. Anaesth Intensive Care. 2009;37(3):432–4.

    CAS  PubMed  Google Scholar 

  141. Jung DM, Ahn HJ, Jung SH, Yang M, Kim JA, Shin SM, Jeon S. Apneic oxygen insufflation decreases the incidence of hypoxemia during one-lung ventilation in open and thoracoscopic pulmonary lobectomy: a randomized controlled trial. J Thorac Cardiovasc Surg. 2017;154:360.

    Article  PubMed  Google Scholar 

  142. Ku CM, Slinger P, Waddell TK. A novel method of treating hypoxemia during one-lung ventilation for thoracoscopic surgery. J Cardiothorac Vasc Anesth. 2009;23(6):850–2.

    Article  PubMed  Google Scholar 

  143. Lohser J, McLean SR. Thoracoscopic wedge resection of the lung using high-frequency jet ventilation in a postpneumonectomy patient. A&A Case Reports. 2013;1:39–41.

    Article  PubMed  Google Scholar 

  144. Mierdl S, Meininger D, Dogan S, Wimmer-Greinecker G, Westphal K, Bremerich DH, Byhahn C. Does poor oxygenation during one-lung ventilation impair aerobic myocardial metabolism in patients with symptomatic coronary artery disease? Interact Cardiovasc Thorac Surg. 2007;6(2):209–13.

    Article  PubMed  Google Scholar 

  145. Casati A, Fanelli G, Pietropaoli P, Proietti R, Tufano R, Danelli G, et al. Continuous monitoring of cerebral oxygen saturation in elderly patients undergoing major abdominal surgery minimizes brain exposure to potential hypoxia. Anesth Analg. 2005;101(3):740–7.

    Article  PubMed  Google Scholar 

  146. Murkin JM, Adams SJ, Novick RJ, Quantz M, Bainbridge D, Iglesias I, et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg. 2007;104(1):51–8.

    Article  PubMed  Google Scholar 

  147. Tobias JD, Johnson GA, Rehman S, Fisher R, Caron N. Cerebral oxygenation monitoring using near infrared spectroscopy during one-lung ventilation in adults. J Minim Access Surg. 2008;4(4):104.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Iwata M, Inoue S, Kawaguchi M, Takahama M, Tojo T, Taniguchi S, Furuya H. Jugular bulb venous oxygen saturation during one-lung ventilation under sevoflurane- or propofol-based anesthesia for lung surgery. J Cardiothorac Vasc Anesth. 2008;22(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  149. Van Hemelrijck J, Fitch W, Mattheussen M, Van Aken H, Plets C, Lauwers T. Effect of propofol on cerebral circulation and autoregulation in the baboon. Anesth Analg. 1990;71(1):49–54.

    PubMed  Google Scholar 

  150. Vandesteene A, Trempont V, Engelman E, Deloof T, Focroul M, Schoutens A, Rood M. Effect of propofol on cerebral blood flow and metabolism in man. Anaesthesia. 1988;43(s1):42–3.

    Article  CAS  PubMed  Google Scholar 

  151. Kazan R, Bracco D, Hemmerling TM. Reduced cerebral oxygen saturation measured by absolute cerebral oximetry during thoracic surgery correlates with postoperative complications. Br J Anaesth. 2009;103(6):811–6.

    Article  CAS  PubMed  Google Scholar 

  152. Yuluğ E, Tekinbas C, Ulusoy H, Alver A, Yenilmez E, Aydin S, et al. The effects of oxidative stress on the liver and ileum in rats caused by one-lung ventilation. J Surg Res. 2007;139(2):253–60.

    Article  PubMed  CAS  Google Scholar 

  153. Pompeo E. State of the art and perspectives in non-intubated thoracic surgery. Ann Transl Med. 2014;2(11):106.

    PubMed  PubMed Central  Google Scholar 

  154. Tacconi F, Pompeo E. Non-intubated video-assisted thoracic surgery: where does evidence stand? J Thorac Dis. 2016;8(Suppl 4):S364–75.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Al-Abdullatief M, Wahood A, Al-Shirawi N, Arabi Y, Wahba M, Al-Jumah M, et al. Awake anaesthesia for major thoracic surgical procedures: an observational study. Eur J Cardiothorac Surg. 2007;32(2):346–50.

    Article  PubMed  Google Scholar 

  156. Pompeo E, Sorge R, Akopov A, Congregado M, Grodzki T, ESTS Non-intubated Thoracic Surgery Working Group. Non-intubated thoracic surgery-a survey from the european society of thoracic surgeons. Ann Transl Med. 2015;3(3):37.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Lohser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schisler, T., Lohser, J. (2019). Clinical Management of One-Lung Ventilation. In: Slinger, P. (eds) Principles and Practice of Anesthesia for Thoracic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-00859-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00859-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00858-1

  • Online ISBN: 978-3-030-00859-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics