Skip to main content
Log in

Sevoflurane anesthetic preconditioning protects the lung endothelial glycocalyx from ischemia reperfusion injury in an experimental lung autotransplant model

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

The glycocalyx is a glycoprotein-polysaccaride layer covering the endothelium luminal surface, and plays a key regulatory role in several endothelial functions. Lung ischemia reperfusion (IR) is a clinical entity that occurs in everyday thoracic surgery and causes glycocalix destruction and a florid local and systemic immune response. Moreover, sevoflurane is able to modulate the inflammatory response triggered by IR lung injury. In this study, we evaluated the protective effects of sevoflurane on the pulmonary endothelial glycocalyx in an in-vivo lung autotransplant model in pigs.

Methods

Sixteen Large White pigs underwent pneumonectomy plus lung autotransplant. They were divided into two groups depending on the hypnotic agent received (propofol or anesthetic preconditioning with sevoflurane). Glycocalyx components (syndecan-1 and heparan sulphate), cathepsin B, chemokines (MCP-1, MIP-1, and MIP-2) and adhesion molecules (VCAM and ICAM-1) were measured at four different timepoints using porcine-specific enzyme-linked immunosorbent assay (ELISA) kits.

Results

There were no differences between groups in weight or in surgical and one-lung ventilation time. Greater glycocalyx destruction and higher chemokine and adhesion molecule expression were observed in the group that did not receive sevoflurane. Heparan sulphate and serum syndecan levels were higher in the propofol group (P < 0.0001) after reperfusion, as was cathepsin B activity (P < 0.015). MCP-1, MIP-1, MIP-2, VCAM, and ICAM-1 levels were also higher in the propofol group (P < 0.006).

Conclusion

Sevoflurane preconditioning protects pulmonary glycocalyx and reduces expression of leukocyte chemokines in an in-vivo model of pulmonary IR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Danielli JF. Capillary permeability and oedema in the perfused frog. J Physiol. 1940;98(1):109–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bennett HS, Luft JH, Hampton JC. Morphological classifications of vertebrate blood capillaries. Am J Physiol. 1959;196(2):381–90.

    CAS  PubMed  Google Scholar 

  3. O’Callaghan R, Job KM, Dull RO, Hlady V. Stiffness and heterogeneity of the pulmonary endothelial glycocalyx measured by atomic force microscopy. Am J Physiol Lung Cell Mol Physiol. 2011;301(3):L353–60.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Oo YH, Adams DH. The role of chemokines in the recruitment of lymphocytes to the liver. J Autoimmun. 2010;34(1):45–54.

    Article  CAS  PubMed  Google Scholar 

  5. Klinke A, Nussbaum C, Kubala L, Friedrichs K, Rudolph TK, Rudolph V. Myeloperoxidase attracts neutrophils by physical forces. Blood. 2011;117(4):1350–8.

    Article  CAS  PubMed  Google Scholar 

  6. Cioffi DL, Pandey S, Alvarez DF, Cioffi EA. Terminal sialic acids are an important determinant of pulmonary endothelial barrier integrity. Am J Physiol Lung Cell Mol Physiol. 2012;302(10):L1067–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dudek SM, Garcia JG. Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol (1985). 2001;91(4):1487–500.

    CAS  Google Scholar 

  8. Zharikov SI, Sigova AA, Chen S, Bubb MR, Block ER. Cytoskeletal regulation of the l-arginine/NO pathway in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2001;280(3):L465–73.

    CAS  PubMed  Google Scholar 

  9. Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res. 2010;87(2):300–10.

    Article  CAS  PubMed  Google Scholar 

  10. Ivanov AN, Puchinyan DM. Norkin IA. Vascular endothelial Barrier Function. Usp Fiziol Nauk. 2015;46(2):72–96.

    CAS  PubMed  Google Scholar 

  11. van Golen RF, van Gulik TM, Heger M. Mechanistic overview of reactive species-induced degradation of the endothelial glycocalyx during hepatic ischemia/reperfusion injury. Free Radic Biol Med. 2012;52(8):1382–402.

    Article  PubMed  Google Scholar 

  12. Monahan LJ. Acute respiratory distress syndrome. Curr Probl Pediatr Adolesc Health Care. 2013;43(10):278–84.

    Article  PubMed  Google Scholar 

  13. Nettelbladt O, Hallgren R. Hyaluronan (hyaluronic acid) in bronchoalveolar lavage fluid during the development of bleomycin-induced alveolitis in the rat. Am Rev Respir Dis. 1989;140(4):1028–32.

    Article  CAS  PubMed  Google Scholar 

  14. Liu YY, Lee CH, Dedaj R, Zhao H, Mrabat H, Sheidlin. High-molecular-weight hyaluronan—a possible new treatment for sepsis-induced lung injury: a preclinical study in mechanically ventilated rats. Crit Care. 2008;12(4):R102.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bedirli N, Demirtas CY, Akkaya T, Salman B, Alper M, Bedirli A. Volatile anesthetic preconditioning attenuated sepsis induced lung inflammation. J Surg Res. 2012;178(1):e17–23.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang T, Liu Y, Ma M, Zong L, Yiliyaer X, Zhang H. The role of remote ischemic preconditioning in ischemia-reperfusion injury in rabbits with transplanted lung. Clin Lab. 2015;61(5–6):481–6.

    CAS  PubMed  Google Scholar 

  17. Annecke T, Chappell D, Chen C, Jacob M, Welsch U, Sommerhoff CP. Sevoflurane preserves the endothelial glycocalyx against ischaemia-reperfusion injury. Br J Anaesth. 2010;104(4):414–21.

    Article  CAS  PubMed  Google Scholar 

  18. Chappell D, Heindl B, Jacob M, Annecke T, Chen C, Rehm M. Sevoflurane reduces leukocyte and platelet adhesion after ischemia-reperfusion by protecting the endothelial glycocalyx. Anesthesiology. 2011;115(3):483–91.

    Article  CAS  PubMed  Google Scholar 

  19. Simon Adiego C, Gonzalez-Casaurran G, Azcarate Perea L, Isea Vina J, Vara Ameigeiras E, Garcia Martin C, Casanova J. Experimental Swine lung autotransplant model to study lung ischemia-reperfusion injury. Arch Bronconeumol. 2011;47(6):283–9.

    Article  PubMed  Google Scholar 

  20. Casanova J, Garutti I, Simon C, Giraldez A, Martin B, Gonzalez G. The effects of anesthetic preconditioning with sevoflurane in an experimental lung autotransplant model in pigs. Anesth Analg. 2011;113(4):742–8.

    Article  CAS  PubMed  Google Scholar 

  21. Ng CS, Wan S, Yim AP, Arifi AA. Pulmonary dysfunction after cardiac surgery. Chest. 2002;121(4):1269–77.

    Article  PubMed  Google Scholar 

  22. de Perrot M, Liu M, Waddell TK, Keshavjee S. Ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med. 2003;167(4):490–511.

    Article  PubMed  Google Scholar 

  23. Kennedy TP, Rao NV, Hopkins C, Pennington L, Tolley E, Hoidal JR. Role of reactive oxygen species in reperfusion injury of the rabbit lung. J Clin Invest. 1989;83(4):1326–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karck M, Haverich A. Nifedipine and diltiazem reduce pulmonary edema formation during postischemic reperfusion of the rabbit lung. Res Exp Med (Berl). 1992;192(2):137–44.

    Article  CAS  PubMed  Google Scholar 

  25. Collins SR, Blank RS, Deatherage LS, Dull RO. Special article: the endothelial glycocalyx: emerging concepts in pulmonary edema and acute lung injury. Anesth Analg. 2013;117(3):664–74.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chappell D, Jacob M, Hofmann-Kiefer K, Rehm M, Welsch U, Conzen P. Antithrombin reduces shedding of the endothelial glycocalyx following ischaemia/reperfusion. Cardiovasc Res. 2009;83(2):388–96.

    Article  CAS  PubMed  Google Scholar 

  27. Chappell D, Jacob M, Paul O, Rehm M, Welsch U, Stoeckelhuber M. The glycocalyx of the human umbilical vein endothelial cell: an impressive structure ex vivo but not in culture. Circ Res. 2009;104(11):1313–7.

    Article  CAS  PubMed  Google Scholar 

  28. Lucchinetti E, Ambrosio S, Aguirre J, Herrmann P, Harter L, Keel M. Sevoflurane inhalation at sedative concentrations provides endothelial protection against ischemia-reperfusion injury in humans. Anesthesiology. 2007;106(2):262–8.

    Article  CAS  PubMed  Google Scholar 

  29. Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer. 2006;6(10):764–75.

    Article  CAS  PubMed  Google Scholar 

  30. Lee HT, Kim M, Jan M, Emala CW. Anti-inflammatory and antinecrotic effects of the volatile anesthetic sevoflurane in kidney proximal tubule cells. Am J Physiol Renal Physiol. 2006;291(1):F67–78.

    Article  CAS  PubMed  Google Scholar 

  31. Rehm M, Zahler S, Lotsch M, Welsch U, Conzen P, Jacob M. Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed. Anesthesiology. 2004;100(5):1211–23.

    Article  CAS  PubMed  Google Scholar 

  32. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, Oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007;454(3):345–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luo X, Miao CH, Ge BX, Jiang H. Effects of isoflurane, sevoflurane and desflurane on expression of ICAM-1 and VCAM-1 in LPS-induced rat lung microvascular endothelial cells. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2010;39(5):464–9.

    CAS  PubMed  Google Scholar 

  34. Mulivor AW, Lipowsky HH. Inhibition of glycan shedding and leukocyte-endothelial adhesion in postcapillary venules by suppression of matrix metalloprotease activity with doxycycline. Microcirculation. 2009;16(8):657–66.

    Article  CAS  PubMed  Google Scholar 

  35. Wang L, Fuster M, Sriramarao P, Esko JD. Endothelial heparan sulfate deficiency impairs l-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol. 2005;6(9):902–10.

    Article  CAS  PubMed  Google Scholar 

  36. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89.

    Article  CAS  PubMed  Google Scholar 

  37. Middleton J, Neil S, Wintle J, Clark-Lewis I, Moore H, Lam C. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell. 1997;91(3):385–95.

    Article  CAS  PubMed  Google Scholar 

  38. Suter D, Spahn DR, Blumenthal S, Reyes L, Booy C, Z’Graggen BR. The immunomodulatory effect of sevoflurane in endotoxin-injured alveolar epithelial cells. Anesth Analg. 2007;104(3):638–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the statistical department at Gregorio Maranon Hospital. Financial support and sponsorship: the study was funded by grants from Carlos III Health Institute (Grant No. FISS PI07/00840) and the “Proyecto Investigar” by ABBOTT laboratories (Grant No. FGICBJ-2013 in Biomedic Investigation Foundation at Gregorio Marañon Hospital in Madrid).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Casanova.

Ethics declarations

Conflict of interest

None.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casanova, J., Simon, C., Vara, E. et al. Sevoflurane anesthetic preconditioning protects the lung endothelial glycocalyx from ischemia reperfusion injury in an experimental lung autotransplant model. J Anesth 30, 755–762 (2016). https://doi.org/10.1007/s00540-016-2195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-016-2195-0

Keywords

Navigation