Skip to main content

Discrete Calculus: History and Future

  • Chapter
Discrete Calculus

Abstract

The goal of this book is to bring together three active areas of current research into a single framework and show how each area benefits from more exposure to the other two. The areas are: discrete calculus, complex networks, and algorithmic content extraction. Although there have been a few intersections in the literature between these areas, they have largely developed independently of one another. However, we believe that researchers working in any one of these three areas can strongly benefit from the tools and techniques being developed in the others. We begin this book by outlining each of these three areas, their history and their relationship to one another. Subsequently, we outline the structure of this work and help the reader navigate its contents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout this work we use the terms network and graph interchangeably to mean exactly the same thing—a 1-complex comprised of nodes and edges. A complex will be defined in Chap. 2.

  2. 2.

    In many disciplines the network structure is itself considered the dataset (since this information must be collected). Our distinction here between data and network is simply due to the fact that in several of the disciplines we consider there is data associated with each node or edge in the network (as in the case of image processing), in which case the network defines the spatial domain upon which the data is processed. However, we address algorithms that can be used to process data associated with a network and algorithms that can be used to analyze the structure of the network itself. Consequently, algorithms that process data associated with networks or algorithms that analyze the network structure itself are both considered to be content extraction algorithms.

References

  1. Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  2. Barabasi, A.L.: Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life. Plume, Cambridge (2003)

    Google Scholar 

  3. Biggs, N., Lloyd, E., Wilson, R.: Graph Theory, 1736–1936. Clarendon, Oxford (1986)

    MATH  Google Scholar 

  4. Bochev, P.B., Hyman, J.M.: Principles of mimetic discretizations of differential operators. In: Arnold, D.N., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds.) Compatible Spatial Discretizations. The IMA Volumes in Mathematics and Its Applications, vol. 142, pp. 89–119. Springer, New York (2006)

    Chapter  Google Scholar 

  5. Bossavit, A.: Computational Electromagnetism. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  6. Branin, F.H. Jr.: The algebraic-topological basis for network analogies and the vector calculus. In: Proc. of Conf. on Generalized Networks, pp. 453–491, Brooklyn, NY (1966)

    Google Scholar 

  7. Buchanan, M.: Nexus: Small Worlds and the Groundbreaking Theory of Networks. Norton, New York (2003)

    Google Scholar 

  8. Christakis, N.A., Fowler, J.H.: Connected: The Surprising Power of Our Social Networks and How They Shape Our Lives. Little, Brown and Company, London (2009)

    Google Scholar 

  9. Chung, F.R.K.: Spectral Graph Theory. Regional Conference Series in Mathematics, vol. 92. Am. Math. Soc., Providence (1997)

    MATH  Google Scholar 

  10. Courant, R.L.: Variational methods for the solution of problems of equilibrium and vibration. Bulletin of the American Mathematical Society 43, 1–23 (1943)

    Article  MathSciNet  Google Scholar 

  11. Courant, R.L., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen 100(1), 32–74 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crowe, M.J.: A History of Vector Analysis: The Evolution of the Idea of a Vectorial System. Dover, New York (1994)

    Google Scholar 

  13. Desbrun, M., Kanso, E., Tong, Y.: Discrete differential forms for computational modeling. In: Proc. of SIGGRAPH (2005)

    Google Scholar 

  14. Desbrun, M., Polthier, K.: Discrete differential geometry. Computer Aided Geometric Design 24(8–9), 427 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dieudonné, J.: A History of Algebraic and Differential Topology, 1900–1960. Springer, Berlin (1989)

    MATH  Google Scholar 

  16. Eckmann, B.: Harmonische Funktionen und Randwertaufgaben in einem Komplex. Commentarii Mathematici Helvetici 17, 240–245 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  17. Elmoataz, A., Lézoray, O., Bougleux, S.: Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing. IEEE Transactions on Image Processing 17(7), 1047–1060 (2008)

    Article  MathSciNet  Google Scholar 

  18. Euler, L.: Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Petropolitanae 8, 128–140 (1736)

    Google Scholar 

  19. Grady, L.: Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  20. Grady, L., Alvino, C.: The piecewise smooth Mumford-Shah functional on an arbitrary graph. IEEE Transactions on Image Processing 18(11), 2547–2561 (2009)

    Article  MathSciNet  Google Scholar 

  21. Gross, P.W., Kotiuga, P.R.: Electromagnetic Theory and Computation: A Topological Approach. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  22. Hamilton, W.R.: On quaternions, or on a new system of imaginaries in algebra. Philosophical Magazine 25(3), 489–495 (1844)

    MathSciNet  Google Scholar 

  23. Hirani, A.N.: Discrete exterior calculus. Ph.D. thesis, California Institute of Technology (2003)

    Google Scholar 

  24. James, I.: History of Topology. North-Holland, Amsterdam (1999)

    MATH  Google Scholar 

  25. Jiang, X., Lim, L.H., Yao, Y., Ye, Y.: Statistical ranking and combinatorial Hodge theory. Mathematical Programming (to appear)

    Google Scholar 

  26. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  27. Kirchhoff, G.: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Annalen der Physik und Chemie 72, 497–508 (1847)

    Google Scholar 

  28. Kotiuga, P.R.: Hodge decompositions and computational electromagnetics. Ph.D. thesis, McGill University, Montréal, Canada (1984)

    Google Scholar 

  29. Kron, G.: Diakoptics: The Piecewise Solution of Large Scale Systems. MacDonald, London (1963)

    Google Scholar 

  30. Lévy, B.: Laplace-Beltrami eigenfunctions towards an algorithm that “understands” geometry. In: IEEE International Conference on Shape Modeling and Applications SMI 2006, p. 13 (2006)

    Google Scholar 

  31. Mattiusi, C.: The finite volume, finite difference, and finite elements methods as numerical methods for physical field problems. Advances in Imaging and Electron Physics 113, 1–146 (2000)

    Article  Google Scholar 

  32. Poincaré, H.: Analysis situs. Journal de l’École Polytechnique 2(1), 1–123 (1895)

    Google Scholar 

  33. Roth, J.P.: An application of algebraic topology to numerical analysis: On the existence of a solution to the network problem. Proceedings of the National Academy of Sciences of the United States of America 41(7), 518–521 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  35. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  36. Strogatz, S.: Exploring complex networks. Nature 410(6825), 268–276 (2001)

    Article  Google Scholar 

  37. Tewari, G., Gotsman, C., Gortler, S.: Meshing genus-1 point clouds using discrete one-forms. Computers & Graphics 30(6), 917–926 (2006)

    Article  Google Scholar 

  38. Tonti, E.: The reason for analogies between physical theories. Applied Mathematical Modelling I, 37–50 (1976)

    Article  MathSciNet  Google Scholar 

  39. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  40. Watts, D.J.: Six Degrees: The Science of a Connected Age. Norton, New York (2004)

    Google Scholar 

  41. Weyl, H.: Repartición de corriente en una red conductora. Revista Matemática Hispano-Americana 5(6), 153–164 (1923)

    Google Scholar 

  42. Zhang, F., Li, H., Jiang, A., Chen, J., Luo, P.: Face tracing based geographic routing in nonplanar wireless networks. In: Proc. of the 26th IEEE INFOCOM (2007)

    Google Scholar 

  43. Zhang, H., van Kaick, O., Dyer, R.: Spectral mesh processing. In: Computer Graphics Forum, pp. 1–29 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo J. Grady .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Grady, L.J., Polimeni, J.R. (2010). Discrete Calculus: History and Future. In: Discrete Calculus. Springer, London. https://doi.org/10.1007/978-1-84996-290-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-290-2_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-289-6

  • Online ISBN: 978-1-84996-290-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics