Skip to main content

Principles of Mimetic Discretizations of Differential Operators

  • Conference paper
Compatible Spatial Discretizations

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 142))

Abstract

Compatible discretizations transform partial differential equations to discrete algebraic problems that mimic fundamental properties of the continuum equations. We provide a common framework for mimetic discretizations using algebraic topology to guide our analysis. The framework and all attendant discrete structures are put together by using two basic mappings between differential forms and cochains. The key concept of the framework is a natural inner product on cochains which induces a combinatorial Hodge theory on the cochain complex. The framework supports mutually consistent operations of differentiation and integration, has a combinatorial Stokes theorem, and preserves the invariants of the De Rham cohomology groups. This allows, among other things, for an elementary calculation of the kernel of the discrete Laplacian. Our framework provides an abstraction that includes examples of compatible finite element, finite volume, and finite difference methods. We describe how these methods result from a choice of the reconstruction operator and explain when they are equivalent. We demonstrate how to apply the framework for compatible discretization for two scalar versions of the Hodge Laplacian.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ainsworth and K. Pinchedez, hp-Approximation theory for BDFM/RT finite elements and applications, SIAM Journal on Numerical Analysis, 40(6), pp. 2047–2068, 2003.

    Article  MathSciNet  Google Scholar 

  2. D. Arnold, Differential complexes and numerical stability, Proceedings of the International Congress of Mathematicians, Beijing 2002, Volume I: Plenary Lectures.

    Google Scholar 

  3. D. Arnold, R. Falk, and R. Winther, Differential complexes and stability of finite element methods. I. The De Rham complex. This volume.

    Google Scholar 

  4. D. Arnold and R. Winther, Mixed finite elements for elasticity, Numer. Math., 42, pp. 401–419, 2002.

    Article  MathSciNet  Google Scholar 

  5. V.I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, 1989.

    Google Scholar 

  6. A. Aziz (Editor), The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, 1972.

    Google Scholar 

  7. P. Bochev and M. Gunzburger, On least-squares finite elements for the Poisson equation and their connection to the Kelvin and Dirichlet principles, SIAM J. Num. Anal., Vol. 43/1, pp. 340–362, 2005.

    Article  MathSciNet  Google Scholar 

  8. P. Bochev and M. Gunzburger, Compatible discretizations of second-order elliptic problems, to appear in Zapiski POMI, St. Petersburg Branch of the Steklov Institute of Mathematics, St. Petersburg, Russia, 2005.

    Google Scholar 

  9. P. Bochev and M. GunzburgerLocally conservative least-squares methods for Darcy Sows, submitted to Comp. Meth. Mech. Engrg.

    Google Scholar 

  10. P. Bochev and A. Robinson, Matching algorithms with physics: exact sequences of finite element spaces, in Collected Lectures on the Preservation of Stability Under Discretization, D. Estep and S. Tavener, Eds., SIAM, Philadelphia, 2001, pp. 145–165.

    Google Scholar 

  11. P. Bochev and M. Shashkov, Constrained Interpolation (remap) of Divergence-free Fields, Computer Methods in Applied Mechanics and Engineering, 194 (2005), pp. 511–530.

    Article  MathSciNet  Google Scholar 

  12. M. Berndt, K. Lipnikov, J. Moulton, and M. Shashkov, Convergence of mimetic finite difference discretizations of the diffusion equation, East-West Journal on Numerical Mathematics, Vol. 9/4, pp. 253–316, 2001.

    MathSciNet  Google Scholar 

  13. M. Berndt, K. Lipnikov, M. Shashkov, M. Wheeler, and I. Yotov, Super-convergence of the Velocity in Mimetic Finite Difference Methods on Quadrilaterals, Los Alamos National Laboratory report LA-UR-03-7904, 2003.

    Google Scholar 

  14. A. Bossavit, A rationale for “edge-elements” in 3-D fields computations, IEEE Trans. Mag. 24, pp. 74–79, 1988.

    Article  Google Scholar 

  15. A. Bossavit, Computational Electromagnetism, Academic, 1998.

    Google Scholar 

  16. A. Bossavit and J. Verite, A mixed fem-biem method to solve 3-d eddy current problems, IEEE Trans. Mag. 18, pp. 431–435, 1982.

    Article  Google Scholar 

  17. F.H. Branin, Jr., The algebraic topological basis for network analogies and the vector calculus, IBM Technical Report, TROO, 1495, Poughkeepsie, NY, 1966.

    Google Scholar 

  18. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element methods, Springer-Verlag, 1991.

    Google Scholar 

  19. F. Brezzi, K. Lipnikov, and M. Shashkov, Convergence of Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes, Los Alamos National Laboratories Report LA-UR-04-5756, 2004.

    Google Scholar 

  20. F. Brezzi, D. Marini, I. Perugia, P. Di Barba, and A. Savini, A novel-field-based mixed formulation of magnetostatics, IEEE Trans. Magnetics, 32/3, May 1996, pp. 635–638.

    Article  Google Scholar 

  21. S.S. Cairns, Introductory topology, Ronald Press Co., New York, 1961.

    MATH  Google Scholar 

  22. L. Demkowicz, P. Monk, L. Vardapetyan, and W. Rachowicz, De Rham Diagram for hp-finite element spaces, TICAM Report 99-06, TICAM, University of Texas, Austin, 1999.

    Google Scholar 

  23. A. Dezin, Multidimensional analysis and discrete models, CRC Presss, Boca Raton, 1995.

    MATH  Google Scholar 

  24. J. Dodziuk, Finite-difference approach to the Hodge theory of harmonic forms, American Journal of Mathematics, 98/1, pp. 79–104, 1973.

    Article  MathSciNet  Google Scholar 

  25. B. Eckman, Harmonische funktionen und randvertanfagaben in einem complex, Commentarii Math. Helvetici, 17 (1944–45), pp. 240–245.

    Google Scholar 

  26. G. Fix, M. Gunzburger, and R. Nicolaides, On mixed finite element methods for first-order elliptic systems, Numer. Math., 37, pp. 29–48, 1981.

    Article  MathSciNet  Google Scholar 

  27. H. Flanders, Differential forms with applications to the physical sciences, Dover Publications, New York, 1989

    MATH  Google Scholar 

  28. G. Forsythe and W. Wasow, Finite difference methods for partial differential equations, Wiley, New York, 1960.

    MATH  Google Scholar 

  29. R. Hiptmair, Canonical construction of finite element spaces, Math. Comp. 68, pp. 1325–1346, 1999.

    Article  MathSciNet  Google Scholar 

  30. R. Hiptmair, Discrete Hodge operators, Numer. Math. 90, pp. 265–289, 2001.

    Article  MathSciNet  Google Scholar 

  31. J.M. Hyman and J.C. Scovel, Deriving mimetic difference approximations to differential operators using algebraic topology, Los Alamos National Laboratory, unpublished report, 1988.

    Google Scholar 

  32. J. Hyman, R. Knapp, and J. Scovel, High-order finite volume approximations of differential operators, Physica D 60, pp. 112–138, 1992.

    Article  MathSciNet  Google Scholar 

  33. J. Hyman and M. Shashkov, Natural discretizations for the divergence, gradient and curl on logically rectangular grids, Comput. Math. Appl. 33, pp. 88–104, 1997.

    Article  MathSciNet  Google Scholar 

  34. J. Hyman and M. Shashkov, Adjoint operators for the natural discretizations of the divergence, gradient and curl on logically rectangular grids, Appl. Num. Math. 25, pp. 413–442, 1997.

    Article  MathSciNet  Google Scholar 

  35. J. Hyman and M. Shashkov, The orthogonal decomposition theorems for mimetic finite difference schemes, SIAM J. Num. Anal. 36, pp. 788–818, 1999.

    Article  MathSciNet  Google Scholar 

  36. J. Hyman and M. Shashkov, Mimetic Discretizations for Maxwell’s Equations, Journal of Computational Physics, 151, pp. 881–909, 1999.

    Article  MathSciNet  Google Scholar 

  37. P.R. Kotiuga, Hodge Decomposition and Computational Electromagnetics, Thesis, Department of electrical engineering, McGill University, Montreal, 1984.

    Google Scholar 

  38. Y. Kuznetsov, K. Lipnikiov, and M. Shashkov, Mimetic Finite-Difference Method on Polygonal Meshes, Los Alamos National Laboratory report LA-UR-03-7608, 2003.

    Google Scholar 

  39. C. Mattiussi, An analysis of finite volume, finite element and finite difference methods using some concepts from algebraic topology, J. Comp. Phys. 133, pp. 289–309, 1997.

    Article  MathSciNet  Google Scholar 

  40. J. Nedelec, Mixed finite elements in ℝ3, Numer. Math., 35, pp. 315–341, 1980.

    Article  MathSciNet  Google Scholar 

  41. J. Nedelec, A new family of finite element methods in ℝ3, Numer. Math., 50, pp. 57–81, 1986.

    Article  MathSciNet  Google Scholar 

  42. R. Nicolaides, Direct discretization of planar div-curl problems, SIAM J. Numer. Anal. 29, pp. 32–56, 1992.

    Article  MathSciNet  Google Scholar 

  43. R. Nicolaides, The covolume approach to computing incompressible flows, in Incompressible fluid dynamics, Trends and advances, M. Gunzburger and R. Nicolaides, Eds., Cambridge University press, pp. 295–334, 1993.

    Google Scholar 

  44. R. Nicolaides and X. Wu, Covolume solutions of three-dimensional div-curl equations, SIAM J. Num. Anal. 34, pp. 2195–2203, 1997.

    Article  MathSciNet  Google Scholar 

  45. R. Nicolaides and K. Trapp, Co-volume discretization of differential forms. This volume.

    Google Scholar 

  46. Raviart P.A. and Thomas J.M., A mixed finite element method for second order elliptic problems, Mathematical aspects of the finite element method, I. Galligani, E. Magenes, Eds. Lecture Notes in Math. 606, Springer-Verlag, New York 1977.

    Google Scholar 

  47. W. Schwalm, B. Moritz, M. Giona, and M. Schwalm, Vector difference calculus for physical lattice models, Physical Review E, 59/1, pp. 1217–1233, 1999.

    Article  MathSciNet  Google Scholar 

  48. A. Samarskii, V. Tishkin, A. Favorskii, and M. Shashkov, Operational finite difference schemes, Differential Equations 17, p. 854, 1981.

    MathSciNet  Google Scholar 

  49. R. Schumann and T. Weiland, Stability of the FDTD algorithm on nonorthogonal grids related to the spatial interpolation scheme, IEEE Trans. Magnetics, 34/5, pp. 2751–2754, September 1998.

    Article  Google Scholar 

  50. S. Steinberg and M. Shashkov, Support-operators finite difference algorithms for general elliptic problems, J. Comp. Phys. 118, pp. 131–151, 1995.

    Article  MathSciNet  Google Scholar 

  51. M. Shashkov, Conservative finite difference methods on general grids, CRC Press, Boca Raton, FL, 1996.

    MATH  Google Scholar 

  52. T. Tarhasaari, L. Kettunen, and A. Bossavit, Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques, IEEE Transactions on Magnetics, 35/3, 1999.

    Google Scholar 

  53. F.L. Teixeira (Editor); Geometric Methods for Computational Electromagnetics, PIER32, EMW Publishing, Cambridge, MA, 2001.

    Google Scholar 

  54. F.L. Teixeira and W.C. Chew, Lattice electromagnetic theory from a topological viewpoint, J. Math. Phys. 40/1, pp. 169–187, 1999.

    Article  MathSciNet  Google Scholar 

  55. V.F. Tishkin, A.P. Favorskii, and M.Y. Shashkov, Using topological methods to construct discrete models (in Russian), Preprint 96, Institute of Applied Mathematics of the USSR Academy of Sciences, 1983.

    Google Scholar 

  56. E. Tonti, On the mathematical structure of a large class of physical theories, Lincei, Rend. Sc. Fis. Mat. e Nat. 52 pp. 51–56, 1972.

    Google Scholar 

  57. E. Tonti, The algebraic-topological structure of physical theories, Proc. Conf. on Symmetry, Similarity and Group Theoretic Meth. in Mech., Calgari, Canada, 1974, pp. 441–467.

    Google Scholar 

  58. K. Trapp, A class of compatible discretizations with applications to Div-Curl systems, PhD Thesis, Carnegie Mellon University, 2004.

    Google Scholar 

  59. H. Weyl, Repartition de corriente et uno red conductoru, Revista Matematica Hispano-Americana 5, pp. 153–164, 1923.

    Google Scholar 

  60. H. Whitney, Geometric Integration Theory, Princeton University Press, 1957.

    Google Scholar 

  61. K.S. Yee; Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Ant. Propa. 14, 1966, pp. 302–307.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Bochev, P.B., Hyman, J.M. (2006). Principles of Mimetic Discretizations of Differential Operators. In: Arnold, D.N., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds) Compatible Spatial Discretizations. The IMA Volumes in Mathematics and its Applications, vol 142. Springer, New York, NY. https://doi.org/10.1007/0-387-38034-5_5

Download citation

Publish with us

Policies and ethics