Skip to main content

Cardiac Resynchronization Therapy: Selection of Candidates

  • Chapter
The ESC Textbook of Cardiovascular Imaging

Abstract

Cardiac resynchronization therapy (CRT) is an established therapy for patients with advanced heart failure (HF), depressed left ventricular function, and wide QRS complex. A significant number of patients do not respond to CRT. Recent studies suggest that assessment of mechanical dyssynchrony may allow identification of potential CRT responders. In addition, the presence of scar tissue and venous anatomy may play a role in the selection of candidates. In this chapter the role of various cardiac imaging modalities addressing these issues in the selection of potential CRT candidates is discussed extensively.

Over the past decades, chronic HF has demonstrated an exponential increase, with a poor long-term outcome.1 Despite the advances in pharmacological therapy, including ACE inhibitors, beta-blockers, and spironolactone, mortality remains high. After the first admission for HF, the 1-year survival is 63% and the 5-year survival is only 30%.1–6 HF patients die either from progressive HF or sudden cardiac death.7 In addition to the high mortality, morbidity is also substantial, with frequent re-hospitalizations for decompensated HF 3 and extensive co-morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bleumink GS, Knetsch AM, Sturkenboom MC, et al Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure. Eur Heart J. 2004;25:1614–1619

    Article  PubMed  Google Scholar 

  2. Stewart S, MacIntyre K, Hole DJ, Capewell S, McMurray JJ. More “malignant” than cancer? Five-year survival following a first admission for heart failure. Eur J Heart Fail. 2001;3:315–322

    Article  CAS  PubMed  Google Scholar 

  3. Jessup M, Brozena S. Heart Failure. N Engl J Med. 2007;348: 2007–2018

    Article  Google Scholar 

  4. Garg R, Yusuf S. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. JAMA. 1995;273:1450–1456

    Article  CAS  PubMed  Google Scholar 

  5. Farrell MH, Foody JM, Krumholz HM. Beta-blockers in heart failure: clinical applications. JAMA. 2002;287:890–897

    Article  CAS  PubMed  Google Scholar 

  6. Pitt B, Zannad F, Remme WJ, et al for The Randomized Aldactone Evaluation Study Investigators. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med. 1999;341:709–717

    Article  CAS  PubMed  Google Scholar 

  7. Goldman S, Johnson G, Cohn J, Cintron G, Smith R, Francis G. Mechanism of death in heart failure. The vasodilator-heart failure trials. The V-Heft VA Cooperative studies group. Circulation. 1993;87:IV24-IV31

    Google Scholar 

  8. Myers J. Principles of exercise prescription for patients with chronic heart failure. Heart Fail Rev. 2008;13:61–68

    Article  PubMed  Google Scholar 

  9. Allen LA, Felker GM. Advances in the surgical treatment of heart failure. Curr Opin Cardiol. 2008;23:249–253

    Article  PubMed  Google Scholar 

  10. Jarcho JA. Biventricular pacing. N Engl J Med. 2006;355:288–294

    Article  CAS  PubMed  Google Scholar 

  11. Abraham WT, Fisher WG, Smith AL, et al MIRACLE Study Group. Multicenter InSync Randomized Clinical Evaluation. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346:1845–1853

    Article  PubMed  Google Scholar 

  12. Bristow MR, Saxon LA, Boehmer J, et al Comparison of medical therapy, pacing and defibrillation in heart failure (COMPANION) investigators. Cardiac resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140–2150

    Article  CAS  PubMed  Google Scholar 

  13. Cleland JGF, Daubert JC, Erdmann E, et al Cardiac resynchronization-heart failure (CARE-HF) study investigators. The effect of cardiac resynchronization therapy on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539–1549

    Article  CAS  PubMed  Google Scholar 

  14. Vardas PE, Auricchio A, Blanc J-J, et al European Society of Cardiology; European Heart Rhythm Association. Guidelines for cardiac pacing and cardiac resynchronization therapy. The task force for cardiac pacing and cardiac resynchronization therapy of the European Society of Cardiology. Developed in collaboration with the European Heart Rhythm Association. Eur Heart J. 2007;28:2256–2295

    Article  PubMed  Google Scholar 

  15. Lang RM, Bierig M, Devereux RB. Recommendations for chamber quantification. Eur J Echocardiogr. 2006;7:79–108

    Article  PubMed  Google Scholar 

  16. Lang RM, Mor-Avi V, Zoghbi WA, Senior R, Klein AL, Pearlman AS. The role of contrast enhancement in the echocardiographic assessment of left ventricle. Am J Cardiol. 2002;90:28–34

    Article  Google Scholar 

  17. Germano G, Kiat H, Kavanagh PB, et al Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med. 1995;36:2138–2147

    CAS  PubMed  Google Scholar 

  18. Bellenger NG, Burgess MI, Ray SG, et al Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance. Are they interchangeable? Eur Heart J. 2000;21:1387–1396

    Article  CAS  PubMed  Google Scholar 

  19. Mehra MR, Greenberg BH. Cardiac resynchronization therapy: caveat medicus! J Am Coll Cardiol. 2004;43:1145–1148

    Article  PubMed  Google Scholar 

  20. Bax JJ, Abraham T, Barold SS, et al Cardiac resynchronization therapy: part 1 – issues before device implantation. J Am Coll Cardiol. 2005;46:2153–2167

    Article  PubMed  Google Scholar 

  21. Auricchio A, Ding J, Spinelli JC, et al Cardiac resynchronization therapy restores optimal atrioventricular mechanical timing in heart failure patients with ventricular conduction delay. J Am Coll Cardiol. 2002;39:1136–1139

    Google Scholar 

  22. Bader H, Garrigue S, Lafitte S, et al Intra-left ventricular electromechanical asynchrony. A new independent predictor of severe cardiac events in heart failure patients. J Am Coll Cardiol. 2004;43: 248–256

    Article  PubMed  Google Scholar 

  23. Pitzalis MV, Iacoviello M, Romito R, et al Cardiac resynchronization therapy tailored by echocardiographic evaluation of ventricular asynchrony. J Am Coll Cardiol. 2002;40:1615–1622

    Article  PubMed  Google Scholar 

  24. Pitzalis MV, Iacoviello M, Romito R, et al Ventricular asynchrony predicts a better outcome in patients with chronic heart failure receiving cardiac resynchronization therapy. J Am Coll Cardiol. 2005;45:65–69

    Article  PubMed  Google Scholar 

  25. Marcus GM, Rose E, Viloria EM, et al VENTAK CHF/CONTAK-CD Biventricular Pacing Study Investigators. Septal to posterior wall motion delay fails to predict reverse remodeling or clinical improvement in patients undergoing cardiac resynchronization therapy. J Am Coll Cardiol. 2005;46:2208–2214

    Article  PubMed  Google Scholar 

  26. Bleeker GB, Schalij MJ, Boersma E, et al Relative merits of M-mode echocardiography and tissue Doppler imaging for prediction of response to cardiac resynchronization therapy in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 2007;99:68–74

    Article  PubMed  Google Scholar 

  27. Rouleau F, Merheb M, Geffroy S, et al Echocardiographic assessment of the interventricular delay of activation and correlation to the QRS width in dilated cardiomyopathy. Pacing Clin Electrophysiol. 2001;24:1500–1506

    Article  CAS  PubMed  Google Scholar 

  28. Ghio S, Constantin C, Klersy C, et al Interventricular and intraventricular dyssynchrony are common in heart failure patients, regardless of QRS duration. Eur Heart J. 2004;25:571–578

    Article  PubMed  Google Scholar 

  29. Bax JJ, Bleeker GB, Marwick TH, et al Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol. 2004;44:1834–1840

    Article  PubMed  Google Scholar 

  30. Penicka M, Bartunek J, De Bruyne B, et al Improvement of left ventricular function after cardiac resynchronization therapy is predicted by tissue Doppler imaging echocardiography. Circulation. 2004;109:978–983

    Article  PubMed  Google Scholar 

  31. Gorcsan J III, Kanzaki H, Bazaz R, Dohi K, Schwartzman D. Usefulness of echocardiographic tissue synchronization imaging to predict acute response to cardiac resynchronization therapy. Am J Cardiol. 2004;93:1178–1181

    Article  PubMed  Google Scholar 

  32. Notabartolo D, Merlino JD, Smith AL, et al Usefulness of the peak velocity difference by tissue Doppler imaging technique as an effective predictor of response to cardiac resynchronization therapy. Am J Cardiol. 2004;94:817–820

    Article  PubMed  Google Scholar 

  33. Yu CM, Fung JW, Zhang Q, et al Tissue Doppler imaging is superior to strain rate imaging and postsystolic shortening on the prediction of reverse remodeling in both ischemic and nonischemic heart failure after cardiac resynchronization therapy. Circulation. 2004; 110:66–73

    Article  PubMed  Google Scholar 

  34. Van de Veire NR, Bleeker GB, De Sutter J, et al Tissue synchronisation imaging accurately measures left ventricular dyssynchrony and predicts response to cardiac resynchronisation therapy. Heart. 2007;93:1034–1039

    Article  PubMed  Google Scholar 

  35. Yu CM, Zhang Q, Wing-Hong Fung J, et al A novel tool to assess systolic asynchrony and identify responders of cardiac resynchronization therapy by tissue synchronization imaging. J Am Coll Cardiol. 2005;45:677–684

    Article  PubMed  Google Scholar 

  36. Van de Veire NR, Bleeker GB, Ypenburg C, et al Usefulness of triplane tissue Doppler imaging to predict acute response to cardiac resynchronization therapy. Am J Cardiol. 2007;100:476–482

    Article  PubMed  Google Scholar 

  37. Van de Veire NR, Yu CM, Ajmone-Marsan N, et al Triplane tissue Doppler imaging: a novel three-dimensional imaging modality that predicts reverse left ventricular remodeling after cardiac resynchronization therapy. Heart. 2008;94:e9

    Article  PubMed  Google Scholar 

  38. Yu CM, Gorcsan J III, Bleeker GB, et al Usefulness of tissue Doppler velocity and strain dyssynchrony for predicting left ­ventricular reverse remodeling response after cardiac resynchronization therapy. Am J Cardiol. 2007;100:1263–1270

    Article  PubMed  Google Scholar 

  39. Dohi K, Sufoletto MS, Schwartzman D, Ganz L, Pinsky MR, Gorcsan J III. Utility of echocardiographic radial strain imaging to quantify left ventricular dyssynchrony and predict acute response to cardiac resynchronization therapy. Am J Cardiol. 2005;96:112–116

    Article  PubMed  Google Scholar 

  40. Leitman M, Lysyansky P, Sidenko S, et al Two-dimensional strain - a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr. 2004; 17:1021–1029

    Article  PubMed  Google Scholar 

  41. Suffoletto MS, Dohi K, Cannesson M, Saba S, Gorcsan J III. Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. Circulation. 2006;113:960–968

    Article  PubMed  Google Scholar 

  42. Delgado V, Ypenburg C, van Bommel RJ, et al Assessment of left ventricular dyssynchrony by speckle tracking strain imaging comparison between longitudinal, circumferential and radial strain in cardiac resynchronization therapy. J Am Coll Cardiol. 2008;51: 1944–1952

    Article  PubMed  Google Scholar 

  43. Kapetanakis S, Kearny MT, Siva A, Gall N, Cooklin M, Monaghan MJ. Real-time three-dimensional echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Circulation. 2005;112:992–1000

    Article  CAS  PubMed  Google Scholar 

  44. Ajmone Marsan N, Bleeker GB, Ypenburg C, et al Real-time three-dimensional echocardiography as a novel approach to assess left ventricular and left atrium reverse remodeling and to predict response to cardiac resynchronization therapy. Heart Rhythm. 2008;5:1257–1264

    Article  Google Scholar 

  45. Boogers MM, Chen J, Bax JJ. Myocardial perfusion single photon emission computed tomography for the assessment of mechanical dyssynchrony. Curr Opin Cardiol. 2008;23:431–439

    Article  PubMed  Google Scholar 

  46. Botvinick EH, O’Connell JW, Kadkade PP, et al Potential added value of three-dimensional reconstruction and display of single photon emission computed tomographic gated blood pool images. J Nucl Cardiol. 1998;5:245–255

    Article  CAS  PubMed  Google Scholar 

  47. Chen J, Garcia EV, Folks RD, et al Onset of left ventricular mechanical contraction as determined by phase-analysis of ECG gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of mechanical dyssynchrony. J Nucl Cardiol. 2005;12:687–695

    Article  PubMed  Google Scholar 

  48. Henneman MM, Chen J, Ypenburg C, et al Phase analysis of gated myocardial perfusion SPECT compared to tissue Doppler imaging for the assessment of ventricular dyssynchrony. J Am Coll Cardiol. 2007;49:1708–1714

    Article  PubMed  Google Scholar 

  49. Ajmone NA, Henneman MM, Chen J, et al Left ventricular dyssynchrony assessed by two three-dimensional imaging modalities: phase analysis of gated myocardial perfusion SPECT and tri-plane tissue Doppler imaging. Eur J Nucl Med Mol Imaging. 2008;35: 166–173

    Article  Google Scholar 

  50. Henneman MM, Chen J, Dibbets-Schneider P, et al Can LV dyssynchrony as assessed with phase analysis on gated myocardial perfusion SPECT predict response to CRT? J Nucl Med. 2007;48: 1104–1111

    Article  PubMed  Google Scholar 

  51. Lardo AC, Abraham TP, Kass DA. Magnetic resonance imaging. Assessment of ventricular dyssynchrony. Current and emerging concepts. J Am Coll Cardiol. 2005;46:2223–2228

    Article  PubMed  Google Scholar 

  52. Helm RH, Lardo AC. Cardiac magnetic resonance assessment of mechanical dyssynchrony. Curr Opin Cardiol. 2008;23:440–446

    Article  PubMed  Google Scholar 

  53. Rüssel IK, Zwanenburg JJ, Germans T, et al Mechanical dyssynchrony or myocardial shortening as MRI predictor of response to biventricular pacing. J Magn Reson Imaging. 2007;26:1452–1460

    Article  PubMed  Google Scholar 

  54. Westenberg JJ, Lamb HJ, van der Geest RJ, et al Assessment of left ventricular dyssynchrony in patients with conduction delay and idiopathic dilated cardiomyopathy: head-to-head comparison between tissue Doppler imaging and velocity-encoded magnetic resonance imaging. J Am Coll Cardiol. 2006;47:2042–2048

    Article  PubMed  Google Scholar 

  55. Da Costa A, Thévenin J, Roche F, et al Prospective validation of stress echocardiography as an identifier of cardiac resynchronization therapy responders. Heart Rhythm. 2006;3:406–413

    Article  PubMed  Google Scholar 

  56. Ypenburg C, Sieders A, Bleeker GB, et al Myocardial contractile reserve predicts improvement in left ventricular function after cardiac resynchronization therapy. Am Heart J. 2007;154:1160–1165

    Article  PubMed  Google Scholar 

  57. Hummel JP, Linder JR, Belcik JT, et al Extent of myocardial viability predicts response to biventricular pacing in ischemic cardiomyopathy. Heart Rhythm. 2005;11:1211–1217

    Article  Google Scholar 

  58. De Winter O, Van de Veire N, Van Heuverswyn F, Van Pottelberge G, Gillebert TC, De Sutter J. Relationship between QRS duration, left ventricular volumes and prevalence of nonviability in patients with coronary artery disease and severe left ventricular dysfunction. Eur J Heart Fail. 2006;8:275–277

    Article  PubMed  Google Scholar 

  59. Ypenburg C, Schalij MJ, Bleeker GB, et al Extent of viability to predict response to cardiac resynchronization therapy in ischemic heart failure patients. J Nucl Med. 2006;47:1565–1570

    PubMed  Google Scholar 

  60. Ypenburg C, Schalij MJ, Bleeker GB, et al Impact of viability and scar tissue on response to cardiac resynchronization therapy in ischaemic heart failure patients. Eur Heart J. 2007;28:33–41

    Article  PubMed  Google Scholar 

  61. Bleeker GB, Kaandorp TA, Lamb HJ, et al Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation. 2006;113:969–976

    Article  PubMed  Google Scholar 

  62. Ypenburg C, Roes SD, Bleeker GB, et al Effect of total scar burden on contrast-enhanced magnetic resonance imaging on response to cardiac resynchronization therapy. Am J Cardiol. 2007;99:657–660

    Article  PubMed  Google Scholar 

  63. von Lüdinghausen M. The venous drainage of the human myocardium. Adv Anat Embryol Cell Biol. 2003;168:1–107

    Google Scholar 

  64. Abbara S, Cury RC, Nieman K, et al Noninvasive evaluation of cardiac veins with 16-MDCT angiography. Am J Roentgenol. 2005;185:1001–1006

    Article  Google Scholar 

  65. Tada H, Naito S, Koyama K, Taniguchi K. Three-dimensional computed tomography of the coronary venous system. J Cardiovasc Electrophysiol. 2003;14:385

    Google Scholar 

  66. Mühlenbruch G, Koos R, Wildberger JE, Günther R, Mahnken AH. Imaging of the cardiac venous system: comparison of MDCT and conventional angiography. AJR. 2005;185:1252–1257

    Article  PubMed  Google Scholar 

  67. Jongbloed MRM, Lamb HJ, Bax JJ, et al Noninvasive visualization of the cardiac venous system using multislice computed tomography. J Am Coll Cardiol. 2005;45:749–753

    Article  PubMed  Google Scholar 

  68. Van de Veire N, Schuijf JD, De Sutter J, et al Non-invasive visualization of the cardiac venous system in coronary artery disease patients using 64-slice computed tomography. J Am Coll Cardiol. 2006;48:1832–1838

    Article  PubMed  Google Scholar 

  69. Blendea D, Shah RV, Auricchio A, et al Variability of coronary venous anatomy in patients undergoing cardiac resynchronization therapy: a high-speed rotational venography study. Heart Rhythm. 2007;4:1163–1164

    Article  Google Scholar 

  70. Van de Veire NR, Ajmone-Marsan N, Schuijf JD, et al Non-invasive imaging of cardiac venous anatomy with 64-slice multi-slice computed tomography and non-invasive assessment of left ventricular dyssynchrony by 3-dimensional tissue synchronization imaging in patients with heart failure scheduled for cardiac resynchronization therapy. Am J Cardiol. 2008; 101:1023–1029

    Article  PubMed  Google Scholar 

  71. Nezafat R, Han Y, Peters DC, et al Coronary magnetic resonance vein imaging: imaging contrast, sequence, and timing. Magn Reson Med. 2007;58:1196–1206

    Article  PubMed  Google Scholar 

  72. Chiribiri A, Kelle S, Götze S, Visualization of the cardiac venous system using cardiac magnetic resonance. Am J Cardiol. 2008;101: 407–412

    Article  PubMed  Google Scholar 

  73. Chung ES, Leon AR, Tavazzi L, et al Results of the predictors of response to CRT (PROSPECT) trial. Circulation. 2008;117: 2608–2616

    Article  PubMed  Google Scholar 

  74. Murphy RT, Sigurdsson G, Mulamalla S, et al Tissue synchronization imaging and optimal left ventricular pacing site in cardiac resynchronization therapy. Am J Cardiol. 2006;97:1615–1621

    Article  PubMed  Google Scholar 

  75. Ypenburg C, van Bommel RJ, Delgado V, et al Optimal left ventricular lead position predicts reverse remodeling and survival after cardiac resynchronization therapy. J Am Coll Cardiol. 2008; 52:1402–1409

    Article  PubMed  Google Scholar 

  76. De Martino G, Messano L, Santamaria M, et al A randomized evaluation of different approaches to coronary sinus venography during biventricular pacemaker implants. Europace. 2005;7:73–76

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Video 20.1

Example of full volume 3D echocardiography in a heart failure patient. Left ventricular volumes are clearly dilated and LVEF is depressed (32%). From the 17 time/volume curves in 17 LV segments, the systolic dyssynchrony index is calculated (11.5%) indicating significant LV dyssynchrony

Video 20.2

Full volume 3D echocardiography is repeated post-CRT implantation. Left ventricular end-systolic volume has decreased significantly resulting in an improved systolic function (LVEF 48%). Note the resynchronization of the left ventricle, with a systolic dyssynchrony index of 1.9%

Video 20.3

Example of an invasive venogram during CRT implantation using an occlusive catheter

Video 20.4

The cardiac venous system can be evaluated non-invasively using 64-slice CT. The coronary sinus and its tributaries can be easily identified on this 3-dimensional, volume-rendered reconstruction of the heart

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited Limited

About this chapter

Cite this chapter

Van de Veire, N.R.L., van der Wall, E.E., Bax, J.J. (2010). Cardiac Resynchronization Therapy: Selection of Candidates. In: Zamorano, J.L., Bax, J.J., Rademakers, F.E., Knuuti, J. (eds) The ESC Textbook of Cardiovascular Imaging. Springer, London. https://doi.org/10.1007/978-1-84882-421-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-421-8_20

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-420-1

  • Online ISBN: 978-1-84882-421-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics