Skip to main content

Genetics of Gestational Diabetes Mellitus and Type 2 Diabetes

  • Chapter
  • First Online:
Gestational Diabetes During and After Pregnancy
  • 2570 Accesses

Abstract

Identifying genes underlying complex diseases hold the promise of new drug targets, improved interventions, and the advent of so-called “personalized medicine.” For almost 2 decades, investigators have attempted to identify genes underlying gestational diabetes mellitus (GDM) and type 2 diabetes mellitus (T2DM), but until recently were mostly unsuccessful. Improvements in genetic information and technology changed the landscape of complex disease genetics. Prior to 2006, only 3 genes were accepted as bonafide T2DM susceptibility genes and there were none for GDM. Currently, approximately 21 genes underlying susceptibility to T2DM and related traits have been identified. However, our knowledge of the genetics underlying GDM has lagged. This chapter reviews the current state of knowledge as to the genetics of both GDM and T2DM, and related traits. The potential relationship between genes underlying these 2 forms of diabetes is discussed and some cautionary notes regarding interpretation of this wealth of genetic knowledge are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morton NE, Collins A. Toward positional cloning with SNPs. Curr Opin Mol Ther. 2002;4:259-264.

    CAS  PubMed  Google Scholar 

  2. Collins FS. Identifying human disease genes by positional cloning. Harvey Lect. 1991;86:149-164.

    CAS  Google Scholar 

  3. Neel JV. Diabetes mellitus – a geneticist’s nightmare. In: Creutzfeldt W, Kobberling J, Neel JV, eds. The Genetics of Diabetes. New York: Springer; 1976:1-11.

    Chapter  Google Scholar 

  4. McCarthy MI. Growing evidence for diabetes susceptibility genes from genome scan data. Curr Diab Rep. 2003;3:159-167.

    Article  PubMed  Google Scholar 

  5. Fajans SS, Bell GI, Polonsky KS. Molecular mechanisms and clinical pathophysiology of maturity onset diabetes of the young. N Engl J Med. 2001;345:971-980.

    Article  CAS  PubMed  Google Scholar 

  6. Keefer LM, Piron MA, De MP, et al. Impaired negative cooperativity of the semisynthetic analogues human [LeuB24]- and [LeuB25]-insulins. Biochem Biophys Res Commun. 1981;100:1229-1236.

    Article  CAS  PubMed  Google Scholar 

  7. Kwok SC, Steiner DF, Rubenstein AH, et al. Identification of a point mutation in the human insulin gene giving rise to a structurally abnormal insulin (insulin Chicago). Diabetes. 1983;32:872-875.

    Article  CAS  PubMed  Google Scholar 

  8. Nanjo K, Sanke T, Kondo M, et al. Mutant insulin syndrome: identification of two families with [LeuA3]insulin and determination of its biological activity. Trans Assoc Am Physicians. 1986;99:132-142.

    Google Scholar 

  9. Nanjo K, Miyano M, Kondo M, et al. Insulin Wakayama: familial mutant insulin syndrome in Japan. Diabetologia. 1987;30:87-92.

    CAS  PubMed  Google Scholar 

  10. Kadowaki T, Kadowaki H, Mori Y. A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. N Engl J Med. 1994;330:962-966.

    Article  CAS  PubMed  Google Scholar 

  11. Deeb SS, Fajas L, Nemoto M, et al. A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet. 1998;20:284-287.

    Article  CAS  PubMed  Google Scholar 

  12. Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26:76-80.

    Article  CAS  PubMed  Google Scholar 

  13. Gloyn AL, Weedon MN, Owen KR, et al. Large-scale association studies of variants in genes encoding the pancreatic β-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003;52:568-572.

    Article  CAS  PubMed  Google Scholar 

  14. Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38:320-323.

    Article  CAS  PubMed  Google Scholar 

  15. Horikawa Y, Oda N, Cox NJ, et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet. 2000;26:163-175.

    Article  CAS  PubMed  Google Scholar 

  16. Bento JL, Palmer ND, Mychaleckyj JC, et al. Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes. Diabetes. 2004;53:3007-3012.

    Article  CAS  PubMed  Google Scholar 

  17. Silander K, Mohlke KL, Scott LJ, et al. Genetic variation near the hepatocyte nuclear factor-4α gene predicts susceptibility to type 2 diabetes. Diabetes. 2004;53:1141-1149.

    Article  CAS  PubMed  Google Scholar 

  18. Love-Gregory LD, Wasson J, Ma J, et al. A common polymorphism in the upstream promoter region of the hepatocyte nuclear factor-4alpha gene on chromosome 20q is associated with type 2 diabetes and appears to contribute to the evidence for linkage in an Ashkenazi Jewish population. Diabetes. 2004;53:1134-1140.

    Article  CAS  PubMed  Google Scholar 

  19. Johansson S, Raeder H, Eide SA, et al. Studies in 3, 523 Norwegians and meta-analysis in 11, 571 subjects indicate that variants in the hepatocyte nuclear factor 4 alpha (HNF4A) P2 region are associated with type 2 diabetes in Scandanavians. Diabetes. 2007;56:3112-3117.

    Article  CAS  PubMed  Google Scholar 

  20. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273:1516-1517.

    Article  CAS  PubMed  Google Scholar 

  21. International Human Genome Mapping Consortium. A physical map of the human genome. Nature. 2001;409:934-941.

    Article  Google Scholar 

  22. The International HapMap Consortium. The international HapMap project. Nature. 2003;426:789-796.

    Article  CAS  Google Scholar 

  23. The International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437:1299-1320.

    Article  PubMed Central  CAS  Google Scholar 

  24. Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identified novel risk loci for type 2 diabetes. Nature. 2007;445:881-885.

    Article  CAS  PubMed  Google Scholar 

  25. Skol AD, Scott LJ, Abecasis GR, et al. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet. 2006;38:209-213.

    Article  CAS  PubMed  Google Scholar 

  26. Diabetes Genetics Initiative of Broad Institute of Harvard and MIT LUaNIfBR. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331-1336.

    Article  CAS  Google Scholar 

  27. Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316:1341-1345.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in U.K. samples reveals risk loci for type 2 diabetes. Science. 2007;316:1336-1341.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Sanna S, Jackson AU, Nagaraja R, et al. Common variants in the GDF5-UQCC region are associated with variation in human height. Nat Genet. 2008;40:198-203.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Weedon MN, Lango H, Lindgren CM, et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet. 2008;40:575-583.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Willer CJ, Sanna S, Jackson AU, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40:161-169.

    Article  CAS  PubMed  Google Scholar 

  32. Kathiresan S, Willer CJ, Peloso GM, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 2009;41:56-65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889-894.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Scuteri A, Sanna S, Chen W-M, et al. Genome-wide asociation scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3:1200-1210.

    Article  CAS  Google Scholar 

  35. Loos RJ, Lindgren CM, Li S, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. 2008;40:768-775.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Chambers JC, Elliott P, Zabaneh D, et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat Genet. 2008;40:716-718.

    Article  CAS  PubMed  Google Scholar 

  37. Thorleifsson G, Walters GB, Gudbjartsson DF, et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet. 2009;41:18-24.

    Article  CAS  PubMed  Google Scholar 

  38. Chen W-M, Erdos MR, Jackson AU, et al. Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. J Clin Invest. 2008;118:2609-2628.

    Google Scholar 

  39. Bouatia-Naji N, Rocheleau G, Van Lommel L, et al. A polymorphism within the G6PC2 gene is associated with fasting plasma glucose levels. Science. 2008;320:1085-1088.

    Article  CAS  PubMed  Google Scholar 

  40. Bouatia-Naji N, Bonnefond A, Cavalcanti-Proenca C, et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet. 2009;41:89-94.

    Google Scholar 

  41. Prokopenko I, Langenberg C, Florez JC, et al. Variants in MTNR1B influence fasting glucose levels. Nat Genet. 2009;41:77-81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Stone LM, Kahn SE, Deeb SS, et al. Glucokinase gene variations in Japanese-Americans with a family history of NIDDM. Diabetes Care. 1994;17:1480-1483.

    Article  CAS  PubMed  Google Scholar 

  43. Stone LM, Kahn SE, Fujimoto WY, et al. A variation at position -30 of the β-cell glucokinase gene promoter is associated with reduced β-cell function in middle-aged Japanese-American men. Diabetes. 1996;45:428.

    Article  Google Scholar 

  44. Weedon MN, Frayling TM, Shields B, et al. Genetic regulation of birth weight and fasting glucose by a common polymorphism in the islet promoter of the glucokinase gene. Diabetes. 2005;54:576-581.

    Article  CAS  PubMed  Google Scholar 

  45. Weedon MN, Clark VJ, Qian Y, et al. A common haplotype of the glucokinase gene alters fasting glucose and birth weight: Association in six studies and population-genetics analyses. Am J Hum Genet. 2006;79:991-1001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Froguel Ph, Zouali H, Vionnet N, et al. Familial hyperglycemia due to mutations in glucokinase. N Engl J Med. 1993;328:697-702.

    Article  CAS  PubMed  Google Scholar 

  47. Hattersley AT. Maturity-onset diabetes of the young: clinical heterogeneity explained by genetic heterogeneity. Diabet Med. 1998;15:15-24.

    Article  CAS  PubMed  Google Scholar 

  48. Chen WM, Jackson AU, Scuteri A, et al. Genome-wide association scans in cohorts from Sardinia and Finland identify a locus for fasting glucose levels. [Abstract Program Number 259]. Presented at the annual meeting of the American Society of Human Genetics, October 2007, San Diego, CA. http://www.ashg.org/cgi-bin/ashg07s/ashg07?author=watanabe&sort=ptimes&sbutton=Detail&absno=11220&sid=462012

    Google Scholar 

  49. Lyssenko V, Nagorny CL, Erdos MR, et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet. 2009;41:82-88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Dina C, Meyre D, Gallina S, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007;39:724-726.

    Article  CAS  PubMed  Google Scholar 

  51. National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes. 1979;28:1039-1057.

    Article  Google Scholar 

  52. World Health Organization: Diabetes Mellitus: Report of a WHO Study Group, 1985.

    Google Scholar 

  53. The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 1997;20:1183-1197.

    Google Scholar 

  54. World Health Organization: Definition, diagnosis and classification of diabetes mellitus and its complications. Report of a WHO Consultation, 1999.

    Google Scholar 

  55. Metzger BE. Summary and recommendation of the Third International Workshop-Conference on Gestational Diabetes Mellitus. Diabetes. 1991;40:197-201.

    Article  PubMed  Google Scholar 

  56. Rich SS. Mapping genes in diabetes. Diabetes. 1990;39:1315-1319.

    Article  CAS  PubMed  Google Scholar 

  57. Dorner G, Plagemann A, Reinagel H. Familial diabetes aggregation in type I diabetics: Gestational diabetes an apparent risk factor for increased diabetes susceptibility in the offspring. Exp Clin Endocrinol. 1987;89:84-90.

    Article  CAS  PubMed  Google Scholar 

  58. McLellan JA, Barrow BA, Levy JC, et al. Prevalence of diabetes mellitus and impaired glucose tolerance in parents of women with gestational diabetes. Diabetologia. 1995;38:693-698.

    Article  CAS  PubMed  Google Scholar 

  59. Martin AO, Simpson JL, Ober C, et al. Frequency of diabetes mellitus in mothers of probands with gestational diabetes: Possible maternal influence on the predisposition to gestational diabetes. Am J Obstet Gynecol. 1985;151:471-475.

    Article  CAS  PubMed  Google Scholar 

  60. Freinkel N, Metzger BE, Phelps RL, et al. Gestational diabetes mellitus: a syndrome with phenotypic and genotypic heterogeneity. Horm Metab Res. 1986;18:427-439.

    Article  CAS  PubMed  Google Scholar 

  61. Ober C, Xiang KS, Thisted RA, et al. Increased risk for gestational diabetes mellitus associated with insulin receptor and insulin-like growth factor II restriction fragment length polymorphisms. Genet Epidemiol. 1989;6:559-569.

    Article  CAS  PubMed  Google Scholar 

  62. Chiu KC, Go RC, Aoki M, et al. Glucokinase gene in gestational diabetes mellitus: population association study and molecular scanning. Diabetologia. 1994;37:104-110.

    Article  CAS  PubMed  Google Scholar 

  63. Festa A, Krugluger W, Shnawa N, et al. Trp64Arg polymorphismof the β3-adrenergic receptor gene in pregnancy: Association with mild gestational diabetes mellitus. J Clin Endocrinol Metab. 1999;84:1695-1699.

    Article  CAS  PubMed  Google Scholar 

  64. Rissanen J, Mykkänen L, Markkanen A, et al. Sulfonylurea receptor 1 gene variants are associated with gestational diabetes and type 2 diabetes but not with altered secretion of insulin. Diabetes Care. 2000;23:70-73.

    Article  CAS  PubMed  Google Scholar 

  65. Chen Y, Liao WX, Roy AC, et al. Mitochondrial gene mutations in gestational diabetes mellitus. Diabetes Res Clin Pract. 2000;48:29-35.

    Article  CAS  PubMed  Google Scholar 

  66. Aggarwal P, Gill-Randall R, Wheatley T, et al. Identification of mtDNA mutation in a pedigree with gestational diabetes, deafness, Wolff-Parkinson-White syndrome and placenta accreta. Hum Hered. 2001;51:114-116.

    Article  CAS  PubMed  Google Scholar 

  67. Megia A, Gallart L, Fernandez-Real JM, et al. Mannose-binding lectin gene polymorphisms are associated with gestational diabetes mellitus. J Clin Endocrinol Metab. 2004;89:5081-5087.

    Article  CAS  PubMed  Google Scholar 

  68. Lauenborg J, Damm P, Ek J, et al. Studies of the ADA/VAL98 polymorphism of the hepatocyte nuclear factor-1α gene and the relationship to β-cell function during an OGTT in glucose-tolerant women with and without previous gestational diabetes mellitus. Diabet Med. 2004;21:1310-1315.

    Article  CAS  PubMed  Google Scholar 

  69. Weng J, Ekelund M, Lehto M, et al. Screening for MODY mutations, GAD antibodies, and type 1 diabetes-associated HLA genotypes in women with gestational diabetes mellitus. Diabetes Care. 2002;25:68-71.

    Article  CAS  PubMed  Google Scholar 

  70. Robitaille J, Grant AM. The genetics of gestational diabetes mellitus: evidence for relationship with type 2 diabetes mellitus. Genet Med. 2008;10:240-250.

    Article  CAS  PubMed  Google Scholar 

  71. Stoffel M, Bell KL, Blackburn CL, et al. Identification of glucokinase mutations in subjects with gestational diabetes mellitus. Diabetes. 1993;42:937-940.

    Article  CAS  PubMed  Google Scholar 

  72. Saker PJ, Hattersley AT, Barrow B, et al. High prevalence of a missense mutation of the glucokinase gene in gestational diabetic patients due to a founder-effect in a local population. Diabetologia. 1996;39:1325-1328.

    Article  CAS  PubMed  Google Scholar 

  73. Allan CJ, Argyropoulos G, Bowker M, et al. Gestational diabetes mellitus and gene mutations which affect insulin secretion. Diabetes Res Clin Pract. 1997;36:135-141.

    Article  CAS  PubMed  Google Scholar 

  74. Ellard S, Beards F, Allen LI, et al. A high prevalence of glucokinase mutations in gestational diabetic subjects selected by clinical criteria. Diabetologia. 2000;43:250-253.

    Article  CAS  PubMed  Google Scholar 

  75. Page RC, Hattersley AT, Levy JC, et al. Clinical characteristics of subjects with a missense mutation in glucokinase. Diabet Med. 1995;12:209-217.

    Article  CAS  PubMed  Google Scholar 

  76. Watanabe RM, Allayee H, Xiang AH, et al. Transcription factor 7-like 2 (TCF7L2) is associated with gestational diabetes mellitus and interacts with adiposity to alter insulin secretion in Mexican Americans. Diabetes. 2007;56:1481-1485.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Black MH, Fingerlin TE, Allayee H, et al. Evidence of interaction between peroxisome proliferator-activated receptor-γ2 and hepatocyte nuclear factor-4α contributing to variation in insulin sensitivity in Mexican Americans. Diabetes. 2008;57:1048-1056.

    Article  CAS  PubMed  Google Scholar 

  78. Li X, Allayee H, Xiang AH, et al. Variation in IGF2BP2 interacts with adiposity to alter insulin sensitivity in Mexican Americans. Obesity. 2009;17:729-736.

    Google Scholar 

  79. Lauenborg J, Grarup N, Damm P, et al. Common type 2 diabetes risk gene variants asociated with gestational diabetes. J Clin Endocrinol Metab. 2009;94:145-150.

    Google Scholar 

  80. Glümer C, Jørgensen T, Borch-Johnsen K, et al. Prevalences of diabetes and impaired glucose regulation in a Danish population: the Inter99 study. Diabetes Care. 2003;26:2335-2340.

    Article  PubMed  Google Scholar 

  81. Singh R, Pearson ER, Clark PM, et al. The long-term impact on offspring of exposure to hyperglycaemia in utero due to maternal glucokinase gene mutations. Diabetologia. 2007;50:620-624.

    Article  CAS  PubMed  Google Scholar 

  82. Pearson ER, Boj SF, Steele AM, et al. Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. PLoS Med. 2007;4:e118.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Kjos SL, Peters RK, Xiang A, et al. Predicting future diabetes in Latino women with gestational diabetes. Diabetes. 1995;44:586-591.

    Article  CAS  PubMed  Google Scholar 

  84. Kim C, Newton KM, Knopp RH. Gestational diabetes and the incidence of type 2 diabetes. Diabetes Care. 2002;25:1862-1868.

    Article  PubMed  Google Scholar 

  85. Schwartz S, Raskin P, Fonseca V, et al. Effect of troglitazone in insulin-treated patients with type II diabetes mellitus. N Engl J Med. 1998;338:861-866.

    Article  CAS  PubMed  Google Scholar 

  86. Baba S. Pioglitazone: a review of Japanese clinical studies. Curr Med Res Opion. 2001;17:166-189.

    Article  CAS  Google Scholar 

  87. Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355:2427-2443.

    Article  CAS  PubMed  Google Scholar 

  88. Buchanan TA, Xiang AH, Peters RK, et al. Preservation of pancreatic β-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk hispanic women. Diabetes. 2002;51:2796-2803.

    Article  CAS  PubMed  Google Scholar 

  89. Xiang AH, Peters RK, Kjos SL, et al. Effect of pioglitazone on pancreatic β-cell function and diabetes risk in Hispanic women with prior gestational diabetes. Diabetes. 2006;55:517-522.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. The DREAM Trial Investigators. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet. 2006;368:1096-1105.

    Article  CAS  Google Scholar 

  91. Minuk HL, Vranic M, Marliss EB, et al. Glucoregulatory and metabolic response to exercise in obese noninsulin-dependent diabetes. Am J Physiol. 1981;240:E458-E464.

    CAS  PubMed  Google Scholar 

  92. Prigeon RL, Jacobson RK, Porte D Jr, et al. Effect of sulfonylurea withdrawal on proinsulin levels, B cell function, and glucose disposal in subjects with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1996;81:3295-3298.

    Article  CAS  PubMed  Google Scholar 

  93. Shapiro ET, Van Cauter E, Tillil H, et al. Glyburide enhances the responsiveness of the β-cell to glucose by does not correct the abnormal patterns of insulin secretion in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1989;69:571-576.

    Article  CAS  PubMed  Google Scholar 

  94. Balkau B, Lange C, Fezeu L, et al. Predicting diabetes: clinical, biological, and genetic approaches: data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care. 2008;31:2056-2061.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. van HM, Dehghan A, Witteman JC, et al. Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes. 2008;57:3122-3128.

    Google Scholar 

  96. Lango H, Palmer CN, Morris AD, et al. Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes. 2008;57:3129-3135.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40:638-645.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Sandhu MS, Weedon MN, Fawcett KA, et al. Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet. 2007;39:951-953.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Yasuda K, Miyake K, Horikawa Y, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40:1092-1097.

    Article  CAS  PubMed  Google Scholar 

  100. Unoki H, Takahashi A, Kawaguchi T, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008;40:1098-1102.

    Article  CAS  PubMed  Google Scholar 

  101. Winckler W, Weedon MN, Graham RR, et al. Evaluation of common variants in the six known maturity-onset diabetes of the young (MODY) genes for association with type 2 diabetes. Diabetes. 2007;56:685-693.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank my colleagues on the FUSION and BetaGene studies and in MAGIC, who have made many of the contributions discussed in this chapter. RMW was or is supported as principle investigator or coinvestigator on grants from the American Diabetes Association (05-RA-140), National Institutes of Health (DK69922, DK62370, and DK61628), and Merck & Co.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Watanabe, R.M. (2010). Genetics of Gestational Diabetes Mellitus and Type 2 Diabetes. In: Kim, C., Ferrara, A. (eds) Gestational Diabetes During and After Pregnancy. Springer, London. https://doi.org/10.1007/978-1-84882-120-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-120-0_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-119-4

  • Online ISBN: 978-1-84882-120-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics