Skip to main content

Mechanism of Metastasis to Bone: The Role of Bone Marrow Endothelium

  • Chapter
  • First Online:
Bone and Cancer

Part of the book series: Topics in Bone Biology ((TBB,volume 5))

Abstract

Cancer cells in the bone come from two sources: primary tumors or metastases from other tissues. Primary cancer of the bone is rare, with 2,370 new cases and 1,330 deaths expected in 2007. Primary cancer accounts for less than 0.2% of all cancers combined [American Cancer Society (ACS)]. The most common type of primary bone cancer is osteosarcoma (35% of bone cancer cases), followed by chondrosarcoma (26%) and Ewing tumor (16%). Most cancer cells in the bone marrow result from metastasis to bone. Breast and prostate cancers are adult cancers that frequently metastasize to bone [25]. Neuroblastoma, a cancer common in children, also frequently metastasizes to skeleton [102]. After lung and liver, the skeleton is the third most common site for cancer metastases. Of sites within the skeletal system, the spine is the most common cancer site, followed by the pelvis, hip, femur, and the skull [ACS].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aboulafia, A.J., Levine, A.M., Schmidt, D., and Aboulafia, D. (2007). Surgical therapy of bone metastases. Semin Oncol 34, 206–214.

    PubMed  Google Scholar 

  2. Aird, W.C. (2007). Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100, 158–173.

    PubMed  CAS  Google Scholar 

  3. Aird, W.C. (2007). Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 100, 174–190.

    PubMed  CAS  Google Scholar 

  4. Aktories, K. (1997). Rho proteins: targets for bacterial toxins. Trends Microbiol 5, 282–288.

    PubMed  CAS  Google Scholar 

  5. Aktories, K., Braun, U., Rosener, S., Just, I., and Hall, A. (1989). The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem Biophys Res Commun 158, 209–213.

    PubMed  CAS  Google Scholar 

  6. Astbury, C., Jackson-Cook, C.K., Culp, S.H., Paisley, T.E., and Ware, J.L. (2001). Suppression of tumorigenicity in the human prostate cancer cell line M12 via microcell-mediated restoration of chromosome 19. Genes Chromosomes Cancer 31, 143–155.

    PubMed  CAS  Google Scholar 

  7. Bandyopadhyay, S., Zhan, R., Chaudhuri, A., Watabe, M., Pai, S.K., Hirota, S., Hosobe, S., Tsukada, T., Miura, K., Takano, Y., Saito, K., Pauza, M.E., Hayashi, S., Wang, Y., Mohinta, S., Mashimo, T., Iiizumi, M., Furuta, E., and Watabe, K. (2006). Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat Med 12, 933–938.

    PubMed  CAS  Google Scholar 

  8. Barrett, J.M., Mangold, K.A., Jilling, T., and Kaul, K.L. (2005). Bi-directional interactions of prostate cancer cells and bone marrow endothelial cells in three-dimensional culture. Prostate 64, 75–82.

    PubMed  Google Scholar 

  9. Barrett, J.M., Rovedo, M.A., Tajuddin, A.M., Jilling, T., Macoska, J.A., MacDonald, J., Mangold, K.A., and Kaul, K.L. (2006). Prostate cancer cells regulate growth and differentiation of bone marrow endothelial cells through TGFbeta and its receptor, TGFbetaRII. Prostate 66, 632–650.

    PubMed  CAS  Google Scholar 

  10. Biermann, J.S., Adkins, D., Benjamin, R., Brigman, B., Chow, W., Conrad, E.U., 3rd, Frassica, D., Frassica, F.J., George, S., Healey, J.H., Heck, R., Jr., Letson, G.D., Mayerson, J., McGarry, S.V., O'Donnell, R.J., Patt, J., Randall, R.L., Santana, V., Satcher, R.L., Schmidt, R.G., Siegel, H.J., Wong, M.K., and Yasko, A.W. (2007). Bone cancer. J Natl Compr Canc Netw 5, 420–437.

    PubMed  Google Scholar 

  11. Bishop, A.L., and Hall, A. (2000). Rho GTPases and their effector proteins. Biochem J 348 Pt 2, 241–255.

    PubMed  CAS  Google Scholar 

  12. Brandi, M.L., and Collin-Osdoby, P. (2006). Vascular biology and the skeleton. J Bone Miner Res 21, 183–192.

    PubMed  CAS  Google Scholar 

  13. Brennen, W.N., Cooper, C.R., Capitosti, S., Brown, M.L., and Sikes, R.A. (2004). Thalidomide and analogues: current proposed mechanisms and therapeutic usage. Clin Prostate Cancer 3, 54–61.

    PubMed  CAS  Google Scholar 

  14. Bussemakers, M.J., Van Bokhoven, A., Tomita, K., Jansen, C.F., and Schalken, J.A. (2000). Complex cadherin expression in human prostate cancer cells. Int J Cancer 85, 446–450.

    PubMed  CAS  Google Scholar 

  15. Chavez-Macgregor, M., Aviles-Salas, A., Green, D., Fuentes-Alburo, A., Gomez-Ruiz, C., and Aguayo, A. (2005). Angiogenesis in the bone marrow of patients with breast cancer. Clin Cancer Res 11, 5396–5400.

    PubMed  CAS  Google Scholar 

  16. Chay, C.H., Cooper, C.R., Gendernalik, J.D., Dhanasekaran, S.M., Chinnaiyan, A.M., Rubin, M., Schmaier, A.H., and Pienta, K.J. (2002). A functional thrombin receptor (PAR1) is expressed on bone-derived prostate cancer cell lines. Urology 60, 760–765.

    PubMed  Google Scholar 

  17. Chi, J.T., Chang, H.Y., Haraldsen, G., Jahnsen, F.L., Troyanskaya, O.G., Chang, D.S., Wang, Z., Rockson, S.G., van de Rijn, M., Botstein, D., and Brown, P.O. (2003). Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci USA 100, 10623–10628.

    PubMed  CAS  Google Scholar 

  18. Coleman, M.L., and Olson, M.F. (2002). Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ 9, 493–504.

    PubMed  CAS  Google Scholar 

  19. Coleman, R.E. (1997). Skeletal complications of malignancy. Cancer 80, 1588–1594.

    PubMed  CAS  Google Scholar 

  20. Coleman, R.E. (2000). Management of bone metastases. Oncologist 5, 463–470.

    PubMed  CAS  Google Scholar 

  21. Coleman, R.E. (2001). Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27, 165–176.

    PubMed  CAS  Google Scholar 

  22. Coleman, R.E. (2006). Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12, 6243s–6249ss.

    PubMed  Google Scholar 

  23. Conway, E.M., and Carmeliet, P. (2004). The diversity of endothelial cells: a challenge for therapeutic angiogenesis. Genome Biol 5, 207.

    PubMed  Google Scholar 

  24. Cooper, C.R., Chaib, H., C.Chay, J.Gendernalik, Macoska, J., and Pienta, K.J. (2003). The identification of reticulocalbin’s role in prostate cancer cell adhesion to human bone marrow endothelium by a novel phage display system. Oncology (Supplement) 17, 42–43.

    Google Scholar 

  25. Cooper, C.R., Chay, C.H., Gendernalik, J.D., Lee, H.L., Bhatia, J., Taichman, R.S., McCauley, L.K., Keller, E.T., and Pienta, K.J. (2003). Stromal factors involved in prostate carcinoma metastasis to bone. Cancer 97, 739–747.

    PubMed  Google Scholar 

  26. Cooper, C.R., McLean, L., Mucci, N.R., Poncza, P., and Pienta, K.J. (2000). Prostate cancer cell adhesion to quiescent endothelial cells is not mediated by beta-1 integrin subunit. Anticancer Res 20, 4159–4162.

    PubMed  CAS  Google Scholar 

  27. Cooper, C.R., and Pienta, K.J. (2000). Cell adhesion and chemotaxis in prostate cancer metastasis to bone: a minireview. Prostate Cancer Prostatic Dis 3, 6–12.

    PubMed  CAS  Google Scholar 

  28. Cussac, D., Leblanc, P., L'Heritier, A., Bertoglio, J., Lang, P., Kordon, C., Enjalbert, A., and Saltarelli, D. (1996). Rho proteins are localized with different membrane compartments involved in vesicular trafficking in anterior pituitary cells. Mol Cell Endocrinol 119, 195–206.

    PubMed  CAS  Google Scholar 

  29. Dallery-Prudhomme, E., Roumier, C., Denis, C., Preudhomme, C., Kerckaert, J.P., and Galiegue-Zouitina, S. (1997). Genomic structure and assignment of the RhoH/TTF small GTPase gene (ARHH) to 4p13 by in situ hybridization. Genomics 43, 89–94.

    PubMed  CAS  Google Scholar 

  30. Dallery, E., Galiegue-Zouitina, S., Collyn-d’Hooghe, M., Quief, S., Denis, C., Hildebrand, M.P., Lantoine, D., Deweindt, C., Tilly, H., Bastard, C., et al. (1995). TTF, a gene encoding a novel small G protein, fuses to the lymphoma-associated LAZ3 gene by t(3;4) chromosomal translocation. Oncogene 10, 2171–2178.

    PubMed  CAS  Google Scholar 

  31. Danen, E.H., Sonneveld, P., Sonnenberg, A., and Yamada, K.M. (2000). Dual stimulation of Ras/mitogen-activated protein kinase and RhoA by cell adhesion to fibronectin supports growth factor-stimulated cell cycle progression. J Cell Biol 151, 1413–1422.

    PubMed  CAS  Google Scholar 

  32. del Peso, L., Hernandez-Alcoceba, R., Embade, N., Carnero, A., Esteve, P., Paje, C., and Lacal, J.C. (1997). Rho proteins induce metastatic properties in vivo. Oncogene 15, 3047–3057.

    PubMed  Google Scholar 

  33. Dimitroff, C.J., Lechpammer, M., Long-Woodward, D., and Kutok, J.L. (2004). Rolling of human bone-metastatic prostate tumor cells on human bone marrow endothelium under shear flow is mediated by E-selectin. Cancer Res 64, 5261–5269.

    PubMed  CAS  Google Scholar 

  34. Draffin, J.E., McFarlane, S., Hill, A., Johnston, P.G., and Waugh, D.J. (2004). CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells. Cancer Res 64, 5702–5711.

    PubMed  CAS  Google Scholar 

  35. Evers, E.E., Zondag, G.C., Malliri, A., Price, L.S., ten Klooster, J.P., van der Kammen, R.A., and Collard, J.G. (2000). Rho family proteins in cell adhesion and cell migration. Eur J Cancer 36, 1269–1274.

    PubMed  CAS  Google Scholar 

  36. Feldkamp, M.M., Lau, N., Rak, J., Kerbel, R.S., and Guha, A. (1999). Normoxic and hypoxic regulation of vascular endothelial growth factor (VEGF) by astrocytoma cells is mediated by Ras. Int J Cancer 81, 118–124.

    PubMed  CAS  Google Scholar 

  37. Fritz, G., Kaina, B., and Aktories, K. (1995). The ras-related small GTP-binding protein RhoB is immediate-early inducible by DNA damaging treatments. J Biol Chem 270, 25172–25177.

    PubMed  CAS  Google Scholar 

  38. Frost, J.A., Steen, H., Shapiro, P., Lewis, T., Ahn, N., Shaw, P.E., and Cobb, M.H. (1997). Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J 16, 6426–6438.

    PubMed  CAS  Google Scholar 

  39. Gampel, A., Parker, P.J., and Mellor, H. (1999). Regulation of epidermal growth factor receptor traffic by the small GTPase rhoB. Curr Biol 9, 955–958.

    PubMed  CAS  Google Scholar 

  40. Geyer, M., and Wittinghofer, A. (1997). GEFs, GAPs, GDIs and effectors: taking a closer (3D) look at the regulation of Ras-related GTP-binding proteins. Curr Opin Struct Biol 7, 786–792.

    PubMed  CAS  Google Scholar 

  41. Gimbrone, M.A., Jr., Cotran, R.S., and Folkman, J. (1974). Human vascular endothelial cells in culture. Growth and DNA synthesis. J Cell Biol 60, 673–684.

    PubMed  CAS  Google Scholar 

  42. Glinsky, V.V., Glinsky, G.V., Rittenhouse-Olson, K., Huflejt, M.E., Glinskii, O.V., Deutscher, S.L., and Quinn, T.P. (2001). The role of Thomsen–Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res 61, 4851–4857.

    PubMed  CAS  Google Scholar 

  43. Hall, A. (1990). The cellular functions of small GTP-binding proteins. Science 249, 635–640.

    PubMed  CAS  Google Scholar 

  44. Harrington, K.D. (1997). Orthopedic surgical management of skeletal complications of malignancy. Cancer 80, 1614–1627.

    PubMed  CAS  Google Scholar 

  45. Hasmim, M., Bieler, G., and Ruegg, C. (2007). Zoledronate inhibits endothelial cell adhesion, migration and survival through the suppression of multiple, prenylation-dependent signaling pathways. J Thromb Haemost 5, 166–173.

    PubMed  CAS  Google Scholar 

  46. Herbert, T.P., Tee, A.R., and Proud, C.G. (2002). The extracellular signal-regulated kinase pathway regulates the phosphorylation of 4E-BP1 at multiple sites. J Biol Chem 277, 11591–11596.

    PubMed  CAS  Google Scholar 

  47. Hippenstiel, S., Soeth, S., Kellas, B., Fuhrmann, O., Seybold, J., Krull, M., Eichel-Streiber, C., Goebeler, M., Ludwig, S., and Suttorp, N. (2000). Rho proteins and the p38-MAPK pathway are important mediators for LPS-induced interleukin-8 expression in human endothelial cells. Blood 95, 3044–3051.

    PubMed  CAS  Google Scholar 

  48. Hori, Y., Kikuchi, A., Isomura, M., Katayama, M., Miura, Y., Fujioka, H., Kaibuchi, K., and Takai, Y. (1991). Post-translational modifications of the C-terminal region of the rho protein are important for its interaction with membranes and the stimulatory and inhibitory GDP/GTP exchange proteins. Oncogene 6, 515–522.

    PubMed  CAS  Google Scholar 

  49. Huttenlocher, A., Sandborg, R.R., and Horwitz, A.F. (1995). Adhesion in cell migration. Curr Opin Cell Biol 7, 697–706.

    PubMed  CAS  Google Scholar 

  50. Iiizumi, M., Bandyopadhyay, S., and Watabe, K. (2007). Interaction of Duffy antigen receptor for chemokines and KAI1: a critical step in metastasis suppression. Cancer Res 67, 1411–1414.

    PubMed  CAS  Google Scholar 

  51. Jaffe, E.A., Nachman, R.L., Becker, C.G., and Minick, C.R. (1973). Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52, 2745–2756.

    PubMed  CAS  Google Scholar 

  52. Kevil, C.G., De Benedetti, A., Payne, D.K., Coe, L.L., Laroux, F.S., and Alexander, J.S. (1996). Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int J Cancer 65, 785–790.

    PubMed  CAS  Google Scholar 

  53. Khaldoyanidi, S.K., Glinsky, V.V., Sikora, L., Glinskii, A.B., Mossine, V.V., Quinn, T.P., Glinsky, G.V., and Sriramarao, P. (2003). MDA-MB-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by Thomsen–Friedenreich antigen–galectin-3 interactions. J Biol Chem 278, 4127–4134.

    PubMed  CAS  Google Scholar 

  54. Kjoller, L., and Hall, A. (1999). Signaling to Rho GTPases. Exp Cell Res 253, 166–179.

    PubMed  CAS  Google Scholar 

  55. Kleer, C.G., van Golen, K.L., Zhang, Y., Wu, Z.F., Rubin, M.A., and Merajver, S.D. (2002). Characterization of RhoC expression in benign and malignant breast disease: a potential new marker for small breast carcinomas with metastatic ability. Am J Pathol 160, 579–584.

    PubMed  CAS  Google Scholar 

  56. Kobayashi, H., Boelte, K.C., and Lin, P.C. (2007). Endothelial cell adhesion molecules and cancer progression. Curr Med Chem 14, 377–386.

    PubMed  CAS  Google Scholar 

  57. Kozma, R., Ahmed, S., Best, A., and Lim, L. (1995). The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol 15, 1942–1952.

    PubMed  CAS  Google Scholar 

  58. Kranenburg, O., Gebbink, M.F., and Voest, E.E. (2004). Stimulation of angiogenesis by Ras proteins. Biochim Biophys Acta 1654, 23–37.

    PubMed  CAS  Google Scholar 

  59. Kumar, S., West, D.C., and Ager, A. (1987). Heterogeneity in endothelial cells from large vessels and microvessels. Differentiation 36, 57–70.

    PubMed  CAS  Google Scholar 

  60. Lamalice, L., Houle, F., Jourdan, G., and Huot, J. (2004). Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38. Oncogene 23, 434–445.

    PubMed  CAS  Google Scholar 

  61. Lauffenburger, D.A., and Horwitz, A.F. (1996). Cell migration: a physically integrated molecular process. Cell 84, 359–369.

    PubMed  CAS  Google Scholar 

  62. Lehr, J.E., and Pienta, K.J. (1998). Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. J Natl Cancer Inst 90, 118–123.

    PubMed  CAS  Google Scholar 

  63. Li, X., Bu, X., Lu, B., Avraham, H., Flavell, R.A., and Lim, B. (2002). The hematopoiesis-specific GTP-binding protein RhoH is GTPase deficient and modulates activities of other Rho GTPases by an inhibitory function. Mol Cell Biol 22, 1158–1171.

    PubMed  CAS  Google Scholar 

  64. Lipton, A., Berenson, J.R., Body, J.J., Boyce, B.F., Bruland, O.S., Carducci, M.A., Cleeland, C.S., Clohisy, D.R., Coleman, R.E., Cook, R.J., Guise, T.A., Pearse, R.N., Powles, T.J., Rogers, M.J., Roodman, G.D., Smith, M.R., Suva, L.J., Vessella, R.L., Weilbaecher, K.N., and King, L. (2006). Advances in treating metastatic bone cancer: summary statement for the First Cambridge Conference. Clin Cancer Res 12, 6209s-6212s.

    PubMed  Google Scholar 

  65. Madaule, P., and Axel, R. (1985). A novel ras-related gene family. Cell 41, 31–40.

    PubMed  CAS  Google Scholar 

  66. Mason, J.C., Yarwood, H., Sugars, K., and Haskard, D.O. (1997). Human umbilical vein and dermal microvascular endothelial cells show heterogeneity in response to PKC activation. Am J Physiol 273, C1233–1240.

    PubMed  CAS  Google Scholar 

  67. Meyer, G., and Feldman, E.L. (2002). Signaling mechanisms that regulate actin-based motility processes in the nervous system. J Neurochem 83, 490–503.

    PubMed  CAS  Google Scholar 

  68. Miles, F.L., Pruitt, F.L., van Golen, K.L., and Cooper, C.R. (2008). Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metastasis 25, 305–324.

    PubMed  CAS  Google Scholar 

  69. Mondal, M.S., Wang, Z., Seeds, A.M., and Rando, R.R. (2000). The specific binding of small molecule isoprenoids to rhoGDP dissociation inhibitor (rhoGDI). Biochemistry 39, 406–412.

    PubMed  CAS  Google Scholar 

  70. Morrissey, C., True, L.D., Roudier, M.P., Coleman, I.M., Hawley, S., Nelson, P.S., Coleman, R., Wang, Y.C., Corey, E., Lange, P.H., Higano, C.S., and Vessella, R.L. (2007). Differential expression of angiogenesis associated genes in prostate cancer bone, liver and lymph node metastases. Clin Exp Metastasis 25: 377–388.

    Google Scholar 

  71. Netelenbos, T., Drager, A.M., van het Hof, B., Kessler, F.L., Delouis, C., Huijgens, P.C., van den Born, J., and van Dijk, W. (2001). Differences in sulfation patterns of heparan sulfate derived from human bone marrow and umbilical vein endothelial cells. Exp Hematol 29, 884–893.

    PubMed  CAS  Google Scholar 

  72. Netelenbos, T., van den Born, J., Kessler, F.L., Zweegman, S., Merle, P.A., van Oostveen, J.W., Zwaginga, J.J., Huijgens, P.C., and Drager, A.M. (2003). Proteoglycans on bone marrow endothelial cells bind and present SDF-1 towards hematopoietic progenitor cells. Leukemia 17, 175–184.

    PubMed  CAS  Google Scholar 

  73. Nobes, C.D., and Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62.

    PubMed  CAS  Google Scholar 

  74. Nobes, C.D., Lauritzen, I., Mattei, M.G., Paris, S., Hall, A., and Chardin, P. (1998). A new member of the Rho family, Rnd1, promotes disassembly of actin filament structures and loss of cell adhesion. J Cell Biol 141, 187–197.

    PubMed  CAS  Google Scholar 

  75. Ofori-Acquah, S.F., King, J., Voelkel, N., Schaphorst, K.L., and Stevens, T. (2007). Heterogeneity of barrier function in the lung reflects diversity in endothelial cell junctions. Microvasc Res 75: 391–402.

    Google Scholar 

  76. Okada, F., Rak, J.W., Croix, B.S., Lieubeau, B., Kaya, M., Roncari, L., Shirasawa, S., Sasazuki, T., and Kerbel, R.S. (1998). Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of vascular endothelial growth factor/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells. Proc Natl Acad Sci USA 95, 3609–3614.

    PubMed  CAS  Google Scholar 

  77. Okado, T., and Hawley, R.G. (1995). Adhesion molecules involved in the binding of murine myeloma cells to bone marrow stromal elements. Int J Cancer 63, 823–830.

    PubMed  CAS  Google Scholar 

  78. Overbeck, A.F., Brtva, T.R., Cox, A.D., Graham, S.M., Huff, S.Y., Khosravi-Far, R., Quilliam, L.A., Solski, P.A., and Der, C.J. (1995). Guanine nucleotide exchange factors: activators of Ras superfamily proteins. Mol Reprod Dev 42, 468–476.

    PubMed  CAS  Google Scholar 

  79. Page, C., Rose, M., Yacoub, M., and Pigott, R. (1992). Antigenic heterogeneity of vascular endothelium. Am J Pathol 141, 673–683.

    PubMed  CAS  Google Scholar 

  80. Paterson, H.F., Self, A.J., Garrett, M.D., Just, I., Aktories, K., and Hall, A. (1990). Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol 111, 1001–1007.

    PubMed  CAS  Google Scholar 

  81. Pluijm, G., Lowik, C., and Papapoulos, S. (2000). Tumour progression and angiogenesis in bone metastasis from breast cancer: new approaches to an old problem. Cancer Treat Rev 26, 11–27.

    PubMed  CAS  Google Scholar 

  82. Ribatti, D., Nico, B., and Vacca, A. (2006). Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene 25, 4257–4266.

    PubMed  CAS  Google Scholar 

  83. Ridley, A.J. (1994). Membrane ruffling and signal transduction. Bioessays 16, 321–327.

    PubMed  CAS  Google Scholar 

  84. Ridley, A.J. (2001). Rho family proteins: coordinating cell responses. Trends Cell Biol 11, 471–477.

    PubMed  CAS  Google Scholar 

  85. Ridley, A.J., and Hall, A. (1992). Distinct patterns of actin organization regulated by the small GTP-binding proteins Rac and Rho. Cold Spring Harb Symp Quant Biol 57, 661–671.

    PubMed  CAS  Google Scholar 

  86. Rinker-Schaeffer, C.W., O'Keefe, J.P., Welch, D.R., and Theodorescu, D. (2006). Metastasis suppressor proteins: discovery, molecular mechanisms, and clinical application. Clin Cancer Res 12, 3882–3889.

    PubMed  CAS  Google Scholar 

  87. Romanov, V.I., Whyard, T., Adler, H.L., Waltzer, W.C., and Zucker, S. (2004). Prostate cancer cell adhesion to bone marrow endothelium: the role of prostate-specific antigen. Cancer Res 64, 2083–2089.

    PubMed  CAS  Google Scholar 

  88. Roodman, G.D. (2004). Mechanisms of bone metastasis. N Engl J Med 350, 1655–1664.

    PubMed  CAS  Google Scholar 

  89. Roof, R.W., Haskell, M.D., Dukes, B.D., Sherman, N., Kinter, M., and Parsons, S.J. (1998). Phosphotyrosine (p-Tyr)-dependent and -independent mechanisms of p190 RhoGAP–p120 RasGAP interaction: Tyr 1105 of p190, a substrate for c-Src, is the sole p-Tyr mediator of complex formation. Mol Cell Biol 18, 7052–7063.

    PubMed  CAS  Google Scholar 

  90. Sahai, E., and Marshall, C.J. (2002). RHO-GTPases and cancer. Nat Rev Cancer 2, 133–142.

    PubMed  Google Scholar 

  91. Sander, E.E., ten Klooster, J.P., van Delft, S., van der Kammen, R.A., and Collard, J.G. (1999). Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol 147, 1009–1022.

    PubMed  CAS  Google Scholar 

  92. Satcher, R.L., Jr., Dvorkin, K., Levenson, A.S., Vandenbroek, T., and Stupp, S.I. (2004). Gene expression in cancer cells is influenced by contact with bone cells in a novel coculture system that models bone metastasis. Clin Orthop Relat Res, 54–63.

    Google Scholar 

  93. Schweitzer, K.M., Vicart, P., Delouis, C., Paulin, D., Drager, A.M., Langenhuijsen, M.M., and Weksler, B.B. (1997). Characterization of a newly established human bone marrow endothelial cell line: distinct adhesive properties for hematopoietic progenitors compared with human umbilical vein endothelial cells. Lab Invest 76, 25–36.

    PubMed  CAS  Google Scholar 

  94. Sikes, R.A., Nicholson, B.E., Koeneman, K.S., Edlund, N.M., Bissonette, E.A., Bradley, M.J., Thalmann, G.N., Cecchini, M.G., Pienta, K.J., and Chung, L.W. (2004). Cellular interactions in the tropism of prostate cancer to bone. Int J Cancer 110, 497–503.

    PubMed  CAS  Google Scholar 

  95. Sipkins, D.A., Wei, X., Wu, J.W., Runnels, J.M., Cote, D., Means, T.K., Luster, A.D., Scadden, D.T., and Lin, C.P. (2005). In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969–973.

    PubMed  CAS  Google Scholar 

  96. Soga, N., Connolly, J.O., Chellaiah, M., Kawamura, J., and Hruska, K.A. (2001). Rac regulates vascular endothelial growth factor stimulated motility. Cell Commun Adhes 8, 1–13.

    PubMed  CAS  Google Scholar 

  97. Soga, N., Namba, N., McAllister, S., Cornelius, L., Teitelbaum, S.L., Dowdy, S.F., Kawamura, J., and Hruska, K.A. (2001). Rho family GTPases regulate VEGF-stimulated endothelial cell motility. Exp Cell Res 269, 73–87.

    PubMed  CAS  Google Scholar 

  98. Sosnoski, D.M., and Gay, C.V. (2007). Evaluation of bone-derived and marrow-derived vascular endothelial cells by microarray analysis. J Cell Biochem 102, 463–472.

    PubMed  CAS  Google Scholar 

  99. Street, J., Bao, M., deGuzman, L., Bunting, S., Peale, F.V., Jr., Ferrara, N., Steinmetz, H., Hoeffel, J., Cleland, J.L., Daugherty, A., van Bruggen, N., Redmond, H.P., Carano, R.A., and Filvaroff, E.H. (2002). Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 99, 9656–9661.

    PubMed  CAS  Google Scholar 

  100. Taichman, R.S., Loberg, R.D., Mehra, R., and Pienta, K.J. (2007). The evolving biology and treatment of prostate cancer. J Clin Invest 117, 2351–2361.

    PubMed  CAS  Google Scholar 

  101. Takai, Y., Sasaki, T., and Matozaki, T. (2001). Small GTP-binding proteins. Physiol Rev 81, 153–208.

    PubMed  CAS  Google Scholar 

  102. van Golen, C.M., Schwab, T.S., Kim, B., Soules, M.E., Su Oh, S., Fung, K., van Golen, K.L., and Feldman, E.L. (2006). Insulin-like growth factor-I receptor expression regulates neuroblastoma metastasis to bone. Cancer Res 66, 6570–6578.

    PubMed  Google Scholar 

  103. van Golen, K.L., Bao, L., DiVito, M.M., Wu, Z., Prendergast, G.C., and Merajver, S.D. (2002). Reversion of RhoC GTPase-induced inflammatory breast cancer phenotype by treatment with a farnesyl transferase inhibitor. Mol Cancer Ther 1, 575–583.

    PubMed  Google Scholar 

  104. van Golen, K.L., Bao, L.W., Pan, Q., Miller, F.R., Wu, Z.F., and Merajver, S.D. (2002). Mitogen activated protein kinase pathway is involved in RhoC GTPase induced motility, invasion and angiogenesis in inflammatory breast cancer. Clin Exp Metastasis 19, 301–311.

    PubMed  Google Scholar 

  105. van Nieuw Amerongen, G.P., Koolwijk, P., Versteilen, A., and van Hinsbergh, V.W. (2003). Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro. Arterioscler Thromb Vasc Biol 23, 211–217.

    PubMed  Google Scholar 

  106. Wang, H.S., Hung, Y., Su, C.H., Peng, S.T., Guo, Y.J., Lai, M.C., Liu, C.Y., and Hsu, J.W. (2005). CD44 cross-linking induces integrin-mediated adhesion and transendothelial migration in breast cancer cell line by up-regulation of LFA-1 (alpha L beta2) and VLA-4 (alpha4beta1). Exp Cell Res 304, 116–126.

    PubMed  CAS  Google Scholar 

  107. Wherlock, M., and Mellor, H. (2002). The Rho GTPase family: a Racs to Wrchs story. J Cell Sci 115, 239–240.

    PubMed  CAS  Google Scholar 

  108. Wittmann, T., and Waterman-Storer, C.M. (2001). Cell motility: can Rho GTPases and microtubules point the way? J Cell Sci 114, 3795–3803.

    PubMed  CAS  Google Scholar 

  109. Wojciak-Stothard, B., and Ridley, A.J. (2002). Rho GTPases and the regulation of endothelial permeability. Vascul Pharmacol 39, 187–199.

    PubMed  CAS  Google Scholar 

  110. Zeng, H., Zhao, D., and Mukhopadhyay, D. (2002). KDR stimulates endothelial cell migration through heterotrimeric G protein Gq/11-mediated activation of a small GTPase RhoA. J Biol Chem 277, 46791–46798.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

Cooper, C.R., Satcher, R.A., Gurski, L.A., van Golen, K.L. (2010). Mechanism of Metastasis to Bone: The Role of Bone Marrow Endothelium. In: Bone and Cancer. Topics in Bone Biology, vol 5. Springer, London. https://doi.org/10.1007/978-1-84882-019-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-019-7_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-018-0

  • Online ISBN: 978-1-84882-019-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics