Skip to main content

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

Abstract

The handling of micro- and nanoscale objects is an important current trend in robotics. It is often referred to as nanohandling, having in mind the range of aspired positioning accuracy. The Greek word “nanos” (dwarf) refers to the physical unit of a nanometer = 1 nm = 10−9m. In this book, we understand nanohandling as the manipulation of microscale and nanoscale objects of different nature with an accuracy in the (sub-) nanometer range, which may include their finding, grasping, moving, tracking, releasing, positioning, pushing, pulling, cutting, bending, twisting, etc. Additionally, different characterization methods, e.g., indenting or scratching on the nanoscale, measurement of different features of the object, requiring probe positioning with nanometer accuracy, structuring or shaping of nanostructures, and generally all kinds of changes to matter at nanolevel could also be defined as nanohandling in the broadest sense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.5 References

  1. Maluf, N. 2000, An Introduction to Microelectromechanical Systems Engineering, Artech House., Boston.

    Google Scholar 

  2. Nanotechnology: Innovation for Tomorrow’s World, 2004. European Commission, Research DG.

    Google Scholar 

  3. Holister, P. 2001, Nanotech: the Tiny Revolution, CMP Cientifica.

    Google Scholar 

  4. Sitti, M. 2003, ‘Teleoperated and automatic nanomanipulation systems using atomic force microscope probes’, IEEE Conference on Decision and Control, Maui, Hawaii.

    Google Scholar 

  5. Sitti, M. & Hashimoto, H. 1999, ‘Teleoperated nanoscale object manipulation’, in Recent Advances on Mechatronics, Springer-Verlag, p. 322.

    Google Scholar 

  6. Hülsen, H., Fatikow, S., Pham, D. T. & Wang, Z. 2006, ‘Self-organising locally interpolating map for the control of mobile microrobots’, Intelligent Production Machines and Systems, Elsevier, pp. 595–600.

    Google Scholar 

  7. Holmlin, R. E., Schiavoni, M., Chen, C. Y., Smith, S. P., Prentiss, M. G. & Whitesides, G. M. 2000, ‘Light-driven microfabrication: Assembly of multicomponent, three-dimensional structures by using optical tweezers’, Angewandte Chemie-International Edition, vol. 39, pp. 3503–3506.

    Article  Google Scholar 

  8. Sinclair, G., Jordan, P., Laczik, J., Courtial, J. & Padgett, M. 2004, ‘Semi-automated 3-dimensional assembly of multiple objects using holographic optical tweezers’, SPIE’s Optical Trapping and Optical Micromanipulation, vol. 5514, pp. 137–142.

    Google Scholar 

  9. Yu, T., Cheong, F.-C. & Sow, C.-H. 2004, ‘The manipulation and assembly of CuO nanorods with line optical tweezers’, Nanotechnology, vol. 15, pp. 1732–1736.

    Article  Google Scholar 

  10. Ashkin, A. 1997, ‘Optical trapping and manipulation of neutral particles using lasers’, National Academy of Scienc., USA, vol. 94, pp. 4853–4860.

    Article  Google Scholar 

  11. Yamamoto, K., Akita, S. & Nakayama, Y. 1996, ‘Orientation of carbon nanotubes using electrophoresis’, Japanese Journal of Applied Physics, vol. 35, pp. L917–L918.

    Article  Google Scholar 

  12. Cristofanelli, M., De Gasperis, G., Zhang, L., Hung, M.-C., Gascoyne, P. R. C. & Hortobagyi, G. N., 2002, ‘Automated electrorotation to reveal dielectric variations related to HER2/neu overexpression in MCF-7 sublines’, Clinical Cancer Research, vol. 8, pp. 615–619.

    Google Scholar 

  13. Parviz, B. A., Ryan, D. & Whitesides, G. M. 2003, ‘Using self-assembly for the fabrication of nano-scale electronic and photonic devices’, IEEE Transactions on Advanced Packaging, vol. 26, no. 3, pp. 233–241.

    Article  Google Scholar 

  14. Morris, C. J., Stauth, S. A. & Parviz, B. A. 2005, ‘Self-assembly for microscale and nanoscale packaging: steps toward self-packaging’, IEEE Transactions on Advanced Packaging, vol. 28, no. 4, pp. 600–611.

    Article  Google Scholar 

  15. Srinivasan, U., Liepmann, D. & Howe, R. T. 2001, ‘Microstructure to substrate self-assembly using capillary forces’, J. Microelectromech. Sys., vol. 10, pp. 17–24.

    Article  Google Scholar 

  16. Palacin, S., Hidber, P. C., Bourgoin, J. P., Miramond, C., Fermon, C. & Whitesides, G. M. 1996, ‘Organization of nanoscale objects via polymer demixing’, Chemical Materials, vol. 8, p. 1316.

    Article  Google Scholar 

  17. Verma, A. K., Hadley, M. A., Yeh, H.-J. & Smith, J. S. 1995, ‘Fluidic self-assembly of silicon microstructures’, 45th Electronic Components and Technology Conf., Las Vegas, NV, pp. 1263–1268.

    Google Scholar 

  18. Soga, I., Ohno, Y., Kishimoto, S., Maezawa, K. & Mizutani, T. 2003, ‘Fluidic assembly of thin GaAs blocks on Si substrates’, Japanese Journal of Applied Physics, vol. 42, pp. 2226–2229.

    Article  Google Scholar 

  19. Böhringer, K. F., Srinivasan, U. & Howe, R. T. 2001, ‘Modeling of capillary forces and binding sites for fluidic self-assembly’, IEEE Conf. Micro Electro Mechanical Systems, Interlaken, Switzerland, pp. 369–374.

    Google Scholar 

  20. Morris, C. J., Stauth, S. & Parviz, B. A. 2005, ‘Using capillary forces for self-assembly of functional microstructures’, 2nd Annual Conference Foundations of Nanoscience, pp. 51–56.

    Google Scholar 

  21. Gyorvary, E., O’Riordan, A., Quinn, A. J., Redmond, G., Pum, D. &, Sleytr, U. 2003, ‘Biomimetic nanostructure fabrication: nonlithographic lateral patterning and self-assembly of functional bacterial S-layers at silicon supports’, Nano Letters, vol. 3, no. 3, pp. 315–319.

    Article  Google Scholar 

  22. Böhringer, K. F., Goldberg, K., Cohn, M., Howe, R. T. & Pisano, A. 1998, ‘Parallel microassembly using electrostatic force fields’, IEEE International Conference Robotics Automation, Leuven, Belgium, pp. 1204–1211.

    Google Scholar 

  23. Yang, M., Ozkan, C. S. & Gao, H. 2003, ‘Self assembly of polymer structures induced by electric field’, J. Assoc. Lab. Automation, vol. 8, pp. 86–89.

    Article  Google Scholar 

  24. Tien, J., Terfort, A. & Whitesides, G.M. 1997, ‘Microfabrication through electrostatic self-assembly’, Langmuir, vol. 13, p. 5349.

    Article  Google Scholar 

  25. Clark, T. D., Tien, J., Duffy, D. C., Paul, K. E. & Whitesides, G. M. 2001, ‘Self-assembly of 10-microm-sized objects into ordered three-dimensional arrays’, Journal of the American Chemical Society, vol. 123, pp. 7677–7682.

    Article  Google Scholar 

  26. Onoe, H., Matsumoto, K. & Shimoyama, I. 2004, ‘Three-dimensional microself-assembly using hydrophobic interaction controlled by self-assembled monolayers’, Journal of Microelectromechanical Systems, vol. 13, pp. 603–611.

    Article  Google Scholar 

  27. Breen, T. L., Tien, J., Oliver, S. R. J., Hadzic, T. & Whitesides, G. M. 1999, ‘Design and self-assembly of open, regular, 3-D mesostructures’, Science, vol. 284, pp. 948–952.

    Article  Google Scholar 

  28. Ulman, A. 1996, ‘Formation and structure of self-assembled monolayers’, Chemical Reviews, vol. 96, pp. 1533–1554.

    Article  Google Scholar 

  29. Love, J. C., Wolfe, D. B., Haasch, R., Chabinyc, M. L., Paul, K. E., Whitesides, G. M. & Nuzzo, R. G. 2003, ‘Formation and structure of self-assembled monolayers of alkanethiolates on palladium’, Journal of the American Chemical Society, vol. 125, pp. 2597–2609.

    Article  Google Scholar 

  30. Maboudian, R., Ashurst, W. R. & Carraro, C. 2000, ‘Self-assembled monolayers as anti-stiction coatings for MEMS: Characteristics and recent developments’, Sensors & Actuators, vol. 82, pp. 219–223.

    Article  Google Scholar 

  31. Li, Y., Moon, K.-S. & Wong, C. P. 2004, ‘Electrical property of anisotropically conductive adhesive joints modified by self-assembled monolayer (SAM)’, Electronic Components and Technology Conference, pp. 1968–1974.

    Google Scholar 

  32. Niemeyer, C. M., Adler, M., Lenhert, S., Gao, S., Fuchs, H. & Chi, L. F. 2001, ‘Nucleic acid supercoiling as a means for ionic switching of DNA nanoparticle networks’, ChemBioChem, vol. 2, pp. 260–264.

    Article  Google Scholar 

  33. Fritz, J., Baller, M. K., Lang, H. P., Rothuizen, H., Vettiger, P., Meyer, E., Guntherodt, H. J., Gerber, C. & Gimzewski, J. K. 2000, ‘Translating biomolecular recognition into nanomechanics’, Science, vol. 288, pp. 316–318.

    Article  Google Scholar 

  34. McNally, H., Pingle, M., Lee, S. W., Guo, D., Bergstrom, D. E. & Bashir, R. 2003, ‘Self-assembly of micro-and nano-scale particles using bio-inspired events’, Applied Surface Science, vol. 214, pp. 109–119.

    Article  Google Scholar 

  35. Wang, C.-J., Lin, L. Y., Dong, J.-C. & Parviz, B. A. 2005, Self-assembled waveguides by DNA hybridization, Nanotech Insight Conference, Luxor, Egypt, pp. 75–76.

    Google Scholar 

  36. Smith, P. A., Nordquist, C. D., Jackson, T. N., Mayer, T. S., Martin, B. R., Mbindyo, J. & Mallouk, T. E. 2000, ‘Electric-field assisted assembly and alignment of metallic nanowires’, Applied Physics Letters, vol. 77, pp. 1399–1401.

    Article  Google Scholar 

  37. Nagahara, L. A., Amlani, I., Lewenstein, J. & Tsui, R. K. 2002, ‘Directed placement of suspended carbon nanotubes for nanometer-scale assembly’, Applied Physics Letters, vol. 80, pp. 3826–3829.

    Article  Google Scholar 

  38. Kamat, P. V., Thomas, K. G., Barazzouk, S., Girishkumar, G., Vinodgopal, K. & Meisel, D. 2004, ‘Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field’, Journal of the American Chemical Society, vol. 126, pp. 10757–10762.

    Article  Google Scholar 

  39. Rao, S. G., Huang, L., Setyawan, W. & Hong, S. 2003, ‘Nanotube electronics: Largescale assembly of carbon nanotubes’, Nature, vol. 425, pp. 36–37.

    Article  Google Scholar 

  40. Dual, J. 1996, ‘Nanorobotics in an optical microscope’, Microsystem Technologies-5th International Conference on Micro Electro, Opto, Mechanical Systems and Components, Potsdam.

    Google Scholar 

  41. Codourey, A., Rodriguez, M. & Pappas, I. 1997, ‘A Task-oriented teleoperation system for assembly in the microworld’, International Conference on Advanced Robotics, Monterey, USA.

    Google Scholar 

  42. Shen, W.-M., Will, P. & Khoshnevis, B. 2003, ‘Self-assembly in space via self-reconfigurable robots’, Multi-Robot Systems: the Second NATO Workshop, Kluwer Academic.

    Google Scholar 

  43. Hydromel 2006, Hydromel-Integrated Project under the Sixth Framework Programme of the European Community (2002–2006), <NMP-2-CT-2006-026622>.

    Google Scholar 

  44. Eigler, D. M. & Schweizer, E. K. 1990, ‘Positioning single atoms with a scanning tunnelling microscope’, Nature, vol. 344, pp. 524–526.

    Article  Google Scholar 

  45. Junno, T., Deppert, K., Montelius, L. & Samuelson, L. 1995, ‘Controlled manipulation of nanoparticles with an atomic force microscope’, Applied Physics Letters, vol. 66, pp. 3627–3629.

    Article  Google Scholar 

  46. Ramachandran, T. R., Baur, C., Bugacov, A., Madhukar, A., Koel, B. E., Requicha, A. & Gazen, C. 1998, ‘Direct and controlled manipulation of nanometer-sized particles using the non-contact atomic force microscope’, Nanotechnology, vol. 9, pp. 237–245.

    Article  Google Scholar 

  47. Baur, C., Bugacov, A., Koel, B.E, Madhukar, A., Montoya, N., Ramachandran, T. R., Requicha, A., Resch, R. & Will, P. 1998, ‘Nanoparticle manipulation by mechanical pushing: underlying phenomena and real-time monitoring, Nanotechnology, vol. 9, pp. 360–364.

    Article  Google Scholar 

  48. Requicha, A. A. G., Meltzer, S., Teran Arce, F. P., Makaliwe, J. H., Siken, H., Hsieh, S., Lewis, D., Koel B. E. & Thompson, M. 2001, ‘Manipulation of nanoscale components with the AFM: principles and applications’, IEEE International Conference on Nanotechnology, Maui.

    Google Scholar 

  49. Arbuckle, D. J., Kelly J. & Requicha, A. A. G. 2006, ‘A high-level nanomanipulation control framework’, International Advanced Robotics Programme Workshop on Micro and Nano Robotics, Paris, France.

    Google Scholar 

  50. Mokaberi, B., Yun, J., Wang, M. & Requicha, A. A. G. 2007, ‘Automated nanomanipulation with atomic force microscopes’, Proc. IEEE International Conference on Robotics & Automation, Italy.

    Google Scholar 

  51. Chen, H., Xi, N. & Li, G. 2006, ‘CAD-guided automated nanoassembly using atomic force microscopy-based nanorobotics’, IEEE Trans. on Automation Science & Engineering, vol. 3, no. 3, pp. 208–217.

    Article  Google Scholar 

  52. Makaliwe, J. H. & Requicha, A. A. G. 2001, ‘Automatic planning of nanoparticle assembly tasks’, IEEE International Symp. on Assembly and Task Planning, Fukuoka, Japan, pp. 288–293.

    Google Scholar 

  53. Sheehan, P. E. & Lieber, C. M. 1996, ‘Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy’, Science, vol. 272, p. 1158.

    Article  Google Scholar 

  54. Schaefer, D. M., Reifenberger, R., Patil, A. & Andres, R. P. 1995, ‘Fabrication of twodimensional arrays of nanometer-size clusters with the atomic force microscope’, Applied Physics Letters, vol. 66, p. 1012.

    Article  Google Scholar 

  55. Meyer, E., Jarvis, S. P. & Spencer, N. D. 2004, ‘Scanning probe microscopy in materials science’, MRS Bulletin, pp. 443–445.

    Google Scholar 

  56. Quate, C. F. 1992, Manipulation and Modification of Nanometer-scale Objects with the STM, Highlights in condened matter physics and future prospects, NATO series, Plenum Press, New York, pp. 573–630.

    Google Scholar 

  57. Schimmel, Th., von Blanckenhagen, P. & Schommers, W. 1999, ‘Nanometer-scale structuring by application of scanning probe microscopes and self-organisation Processes’, Applied Physics, vol. A68, p. 263.

    Google Scholar 

  58. von Blanckenhagen P. 1999, Applications of Scanning Probe Microscopy in Materials Science: Examples of Surface Modifications and Quantitative Analysis, Atomic Force Microscopy/Scanning Tunneling Microscopy, vol. 3, Springer, New York.

    Google Scholar 

  59. Heckl, W. M. 1997, Visualization and Nanomanipulation of Molecules in the Scanning Tunnelling Microscope, Pioneering Ideas for the Physical and Chemical Sciences, Plenum Press, New York.

    Google Scholar 

  60. Klehn, B. & Kunze, U. 1999, ‘Nanolithography with an atomic force microscope by means of vector-scan controlled dynamic plowing’, Journal of Applied Physics, vol. 85, no. 7, pp. 3897–3903.

    Article  Google Scholar 

  61. Fang, T.-H., Weng C.-I. & Chang, J.-G. 2000, ‘Machining characterization of the nano-lithography process using atomic force microscopy’, Nanotechnology, vol. 11, pp. 181–187.

    Article  Google Scholar 

  62. M. Villarroya, et al. 2004, ‘AFM lithography for the definition of nanometre scale gaps: application to the fabrication of a cantilever-based sensor with electrochemical current detection’, Nanotechnology, vol. 15, pp. 771–776.

    Article  Google Scholar 

  63. Lü, J., Li, H., An, H., Wang, G., Wang, Y., Li, M., Zhang, Y., & Hu, J., 2004, ‘Positioning isolation and biochemical analysis of single DNA molecules based on nanomanipulation and single-molecule PCR’, Journal of Am. Chem. Soc., vol. 126, no. 36, pp. 11136–11137.

    Article  Google Scholar 

  64. Heckl, W. M. 1998, ‘The combination of AFM nanodissection with PCR’, BIOforum International, vol. 2, p. 133.

    Google Scholar 

  65. Held, R., Vancura, T., Heinzel, T., Ensslin, K., Holland, M., & Wegscheider, W. 1998, ‘In-plane gates and nanostructures fabricated by direct oxidation of semiconductor heterostructures with an atomic force microscope’, Applied Physics Letters, vol. 73, p. 262.

    Article  Google Scholar 

  66. Wouters, D. & Schubert, U. S. 2004, ‘Nanolithography and nanochemistry: probe related patterning techniques and chemical modification for nanometer-sized devices’, Angewandte Chemie, International Edition, vol. 43, pp. 2480–2495.

    Article  Google Scholar 

  67. Piner, R. D., Zhu, J., Xu, F., Hong, S. & Mirkin, C. A. 1999, ‘Dip-pen nanolithography’, Science, vol. 283, pp. 661–663.

    Article  Google Scholar 

  68. Ginger, D. S., Zhang, H. & Mirkin, C. A. 2004, ‘The evolution of dip-pen nanolithography’, Angewandte Chemie, International Edition, vol. 43, pp. 30–45.

    Article  Google Scholar 

  69. Li, G. Y., Xi, N., Chen, H. P., Pomeroy, C. & Prokos, M. 2005, ‘Videolized AFM for interactive nanomanipulation and nanoassembly’, IEEE Transactions on Nanotechnology, vol. 4, pp. 605–615.

    Article  Google Scholar 

  70. Li, G. Y., Xi, N. & Yu, M. 2004, ‘Development of augmented reality system for AFM based nanomanipulation’, IEEE/ASME Transactions on Mechatronics, vol. 9, no. 2, pp. 199–211.

    Google Scholar 

  71. Requicha, A. A. G. 1993, ‘Nanorobots, NEMS and nanoassembly’, Proceedings of the IEEE, vol. 91, no. 11, pp. 1922–1933.

    Google Scholar 

  72. Mokaberi, B. & Requicha, A. A. G. 2006, ‘Drift compensation for automatic nano-manipulation with scanning probe microscopes’, IEEE Transactions on Automation Science and Engineering, vol. 3, no. 3, pp. 199–207.

    Article  Google Scholar 

  73. Schitter, G., Stark, R. W. & Stemmer A. 2004, ‘Fast contact-mode atomic force microscopy on biological specimen by model-based control’, Ultramicroscopy, vol. 100, pp. 253–257.

    Article  Google Scholar 

  74. Rubio-Sierra, F. J., Heckl, W. M. & Stark, R. W. 2005, ‘Nanomanipulation by atomic force micrscopy’, Advanced Engineering Materials, vol. 7, no. 4, pp. 193–196.

    Article  Google Scholar 

  75. Troyton, M., Lei, H. N., Wang, Z. & Shang, G. 1998, ‘A scanning force microscope combined with a scanning electrone microscope for multidimensional data analysis’, Scanning Microscopy, vol. 12, no. 1, pp. 139–148.

    Google Scholar 

  76. Joachimsthaler, J., Heiderhoff, R. & Balk, L. J. 2003, ‘A universal scanning-probe-microscope-based hybrid system’, Measurement Science and Technology, vol. 14, pp. 87–96.

    Article  Google Scholar 

  77. Kikukawa, A., Hosaka, S., Honda, Y. & Koyanagi, H. 1993, ‘Magnetic force microscope combined with a scanning electrone microscope’, Journal of Vacuum Science Technology, vol. A11, pp. 3092–3098.

    Article  Google Scholar 

  78. Aoyama, H., Iwata, F. and Sasaki, A. 1995, ‘Desktop flexible manufacturing system by movable miniature robots’, International Conference on Robotics and Automation, pp. 660–665.

    Google Scholar 

  79. Brufau-Penella, J., Puig-Vidal, M., López-Sánchez, J., Samitier, J., Driesen, W., Breguet, J.-M., Gao, J., Velten, T., Seyfried, J., Estaña, R. & Wörn, H. 2005, ‘MICRoN: small autonomous robot for cell manipulation applications’, IEEE International Conference on Robotics and Automation.

    Google Scholar 

  80. Sitti, M. & Hashimoto, H. 2000, ‘Two-dimensional fine particle positioning under optical microscope using a piezoresistive cantilever as a manipulator’, Journal of Micromechatronics, vol. 1, no. 1, pp. 25–48.

    Article  Google Scholar 

  81. Codourey, A., Zesch, W., Büchi, R. 1995, ‘A robot system for automated handling in mirco-world’, IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh, Pennsylvania, pp. 185–190.

    Google Scholar 

  82. Dario, P., Valleggi, R., Carrozza, M. C., Montesi, M. C. & Cocco, M. 1992, ‘Microactuators for microrobots: a critical survey’, Journal of Micromechanics and Microengineering, vol. 2, pp. 141–157.

    Article  Google Scholar 

  83. Driesen, W., Varidel, T, Regnier, S. & Breguet, J.-M. 2005, ‘Micro manipulation by adhesion with two collaborating mobile micro robots’, Journal of Micromechanics and Microengineering, vol. 15, pp. 259–267.

    Article  Google Scholar 

  84. Fatikow, S., Magnussen, B. & Rembold, U. 1995, ‘A piezoelectric mobile robot for handling of microobjects’, International Symposium on Microsystems, Intelligent Materials and Robots, Sendai, pp. 189–192.

    Google Scholar 

  85. Fujita, H. 1993, ‘Group work of microactuators’, International IARP-Workshop on Micromachine Technologies and Systems, Tokyo, pp. 24–31.

    Google Scholar 

  86. Fukuda, T., Arai, F. & Dong, L. 2003, ‘Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations’, Proceedings of the IEEE, vol. 91 no. 11, pp. 1803–1818.

    Article  Google Scholar 

  87. Gengenbach, U. 1996, ‘Automatic assembly of microoptical components’, International Symposium on Intelligent Systems & Advanced Manufacturing, vol. 2906, pp. 141–150.

    Google Scholar 

  88. Hatamura, Y., Nakao, M. and Sato, T. 1995, ‘Construction of nano manufacturing world’, Microsystem Technologies, vol. 1, pp.155–162.

    Article  Google Scholar 

  89. Johansson, St. 1995, ‘Micromanipulation for micro-and nano-manufacturing’, INRIA/IEEE Conference on Emerging Technologies and Factory Automation, Paris, vol. 3, pp. 3–8.

    Article  Google Scholar 

  90. Magnussen, B., Fatikow, S. & Rembold, U. 1995, ‘Actuation in microsystems: problem field overview and practical example of the piezoelectric robot for handling of microobjects’, INRIA/IEEE Conference on Emerging Technologies and Factory Automation, vol. 3, pp. 21–27.

    Article  Google Scholar 

  91. Mitsuishi, M., Kobayashi, K., Nagao, T., Hatamura, Y., Sato, T. & Kramer, B. 1993, ‘Development of tele-operated micro-handling/machining system based on information transformation’, IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, pp. 1473–1478.

    Google Scholar 

  92. Morishita, H. & Hatamura, Y. 1993, ‘Development of ultra precise manipulator system for future nanotechnology’, International IARP Workshop on Micro Robotics and Systems, Karlsruhe, pp. 34–42.

    Google Scholar 

  93. Mazerolle, S., Rabe, R., Fahlbusch, S., Michler, J. & Breguet, J.-M. 2004, ‘High precision robotics system for scanning electron microscopes’, Proceedings of the IWMF, vol. 1, pp. 17–22.

    Google Scholar 

  94. Sato, T., Kameya, T., Miyazaki, H. & Hatamura, Y. 1995, ‘Hand-eye System in nano manipulation world’, International Conference on Robotics and Automation, Nagoya, pp. 59–66.

    Google Scholar 

  95. Arai, T. & Tanikawa, T. 1997, ‘Micro manipulation using two-finger hand’, Proc. of the Int. Workshop on Working in the Micro-and Nano-Worlds: Systems to Enable the Manipulation and Machining of Micro-Objects, IEEE/RSJ International Conference on Intelligent Robots and Systems, France, pp. 12–19.

    Google Scholar 

  96. Breguet, J.-M. & Renaud, Ph. 1996, ‘A 4-degrees-of-freedom microrobot with nanometer resolution’, Robotica, vol. 14, pp. 199–203.

    Article  Google Scholar 

  97. Fearing, R. S. 1992, ‘A miniature mobile platform on an air bearing’, 3rd International Symposium on Micro Machine and Human Science, Nagoya, pp. 111–127.

    Google Scholar 

  98. Fukuda, T. & Ueyama, T. 1994, ‘Cellular robotics and micro robotic systems’, World Scientific, Singapore.

    Google Scholar 

  99. Hesselbach, J., Pittschellis, R. & Thoben, R. 1997, ‘Robots and grippers for micro assembly’, 9th International Precision Engineering Seminar, Braunschweig, pp. 375–378.

    Google Scholar 

  100. Menciassi, A., Carozza, M. C., Ristori, C., Tiezzi, G. & Dario, P. 1997, ‘A workstation for manipulation of micro objects’, IEEE International Conference on Advanced Robotics, Monterey, California, pp.253–258.

    Google Scholar 

  101. Rembold, U. & Fatikow, S. 1997, ‘Autonomous microrobots’, Journal of Intelligent and Robotic Systems, vol. 19, pp. 375–391.

    Article  Google Scholar 

  102. Weck, M., Hümmler, J. & Petersen, B. 1997, ‘Assembly of hybrid micro systems in a large-chamber scanning electron microscope by use of mechanical grippers’, International Conference on Micromachining and Microfabrication, Austin, Texas, pp. 223–229.

    Google Scholar 

  103. Sitti, M. 2001, ‘Survey of nanomanipulation systems’, 1st IEEE Conference on Nanotechnology, Maui, HI, USA, pp. 75–80.

    Google Scholar 

  104. Martel S., Madden P., Sosnowski L., Hunter I. & Lafontaine S. 1999, ‘NanoWalker: a fully autonomous highly integrated miniature robot for nano-scale measurements’, European Optical Society and SPIE International Symposium on Environsense, Microsystems Metrology and Inspection, vol. 3825, Munich, Germany.

    Google Scholar 

  105. Bourjault, A. & Chaillet, N. 2002, La microrobotique, Hermes.

    Google Scholar 

  106. Ferreira, A., Fontaine, J-G. & Hirai, S. 2001, ‘Virtual reality-guided microassembly desktop workstation’, 5th Japan-France Congress on Mecatronics, Besançon, France, pp. 454–460.

    Google Scholar 

  107. Montane, E., Miribel, P., Puig-Vidal, M., Bota, S. A. & Samitier, J. 2001, ‘High voltage smart power circuits to drive piezoceramic actuators for microrobotic applications’, IEE Circuits Devices and Systems, vol. 148, pp. 343–347.

    Article  Google Scholar 

  108. Schmoeckel, F., Fahlbusch, St., Seyfried, J., Buerkle, A. & Fatikow, S. 2000, ‘Development of a microrobot-based micromanipulation cell in an SEM’, SPIE’s International Symposium on Intelligent Systems & Advanced Manufacturing: Conference on Microrobotics and Microassembly, Boston, MA, USA, pp. 129–140.

    Google Scholar 

  109. Fatikow, S. 1996, ‘An automated micromanipulation desktop-station based on mobile piezoelectric microrobots’, SPIE’s International Symp. on Intelligent Systems & Advanced Manufacturing, Boston, MA, vol. 2906: Microrobotics: Components and Applications, pp. 66–77.

    Google Scholar 

  110. Fatikow, S. & Rembold, U. 1997, Microsystem Technology and Microrobotics, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  111. Fatikow, S., Rembold, U. & Wörn, H. 1997, ‘Design and control of flexible microrobots for an automated microassembly desktop-station’, SPIE’s International Symposium on Intelligent Systems & Advanced Manufacturing, vol. IS02: Microrobotics and Microsystem Fabrication, Pittsburgh, PA, pp. 66–77.

    Google Scholar 

  112. Fatikow, S., Munassypov, R. & Rembold, U. 1998, ‘Assembly planning and plan decomposition in an automated microrobot-based microassembly desktop station’, Journal of Intelligent Manufacturing, vol. 9, pp. 73–92.

    Article  Google Scholar 

  113. Fahlbusch, St., Buerkle, A. & Fatikow, S. 1999, ‘Sensor system of a microrobot-based micromanipulation desktop-station’, International Conference on CAD/CAM, Robotics and Factories of the Future, Campinas, Brazil, vol. 2, no. RW4, pp. 1–6.

    Google Scholar 

  114. Yang, G., Gaines, J. A. & Nelson, B. J. 2003, ‘A supervisory wafer-level 3D microassembly system for hybrid MEMS fabrication’, Journal of Intelligent and Robotic Systems, vol. 37, pp. 43–68.

    Article  Google Scholar 

  115. Bleuler, H., Clavel, R., Breguet, J.-M., Langen, H. & Pernette, E. 2000, ‘Issues in precision motion control and microhandling’, International Conference on Robotics & Automation, San Francisco, USA.

    Google Scholar 

  116. Kasaya, T., Miyazaki, H., Saito, S. & Sato, T. 1999, ‘Micro object handling under SEM by vision-based automatic control’, International Conference on Robotics and Automation, Detroit, USA, pp. 2736–2743.

    Google Scholar 

  117. Clevy, C., Hubert, A., Agnus, J. & Chaillet, N. 2005, ‘A micromanipulation cell including a toll changer’, Journal of Micromechanics and Microengineering, vol. 15, pp. 292–301.

    Article  Google Scholar 

  118. Tanikawa, T., Kawai, M., Koyachi, N., Arai, T., Ide, T., Kaneko, S., Ohta, R. & Hirose, T. 2001, ‘Force control system for autonomous micromanipulation’, International Conference on Robotics and Automation, Seoul, pp. 610–615.

    Google Scholar 

  119. Fatikow, S. 2000, Microrobotics and Microassembly (in German), Teubner Verlag, Stuttgart.

    Google Scholar 

  120. Fatikow, S., Seyfried, J., Fahlbusch, St., Buerkle, A. & Schmoeckel, F. 2000, ‘A flexible microrobot-based microassembly station’, Journal of Intelligent and Robotic Systems, Kluwer, Dordrecht, vol. 27, pp. 135–169.

    Google Scholar 

  121. Fatikow, S., Fahlbusch, St., Garnica, St., Hülsen, H., Kortschack, A., Shirinov, A. & Sill, A. 2002, ‘Development of a versatile nanohandling station in a scanning electron microscope’, 3rd International Workshop on Microfactories, Minneapolis, Minnesota, USA, September 16–18, pp. 93–96.

    Google Scholar 

  122. Hülsen, H., Trüper, T., Kortschack, A., Jähnisch, M. & Fatikow, S. 2004, ‘Control system for the automatic handling of biological cells with mobile microrobots’, American Control Conference, Boston, MA, USA, pp. 3986–3991.

    Google Scholar 

  123. Fatikow, S., Kortschack, A., Hülsen, H., Sievers, T. & Wich, Th. 2004, ‘Towards fully automated microhandling’, 4th International Workshop on Microfactories, Shanghai, China, vol. 1, pp. 34–39.

    Google Scholar 

  124. Wich, Th., Sievers, T., Jähnisch, M., Hülsen, H. & Fatikow, S. 2005, ‘Nanohandling automation within a scanning electron microscope’, IEEE International Symposium on Industrial Electronics, Dubrovnik, Croatia, pp. 1073–1078.

    Google Scholar 

  125. Sievers, T. & Fatikow, S. 2005, ‘Visual servoing of a mobile microrobot inside a scanning electron microscope’, IEEE International Conference on Intelligent Robots and Systems, Edmonton Canada, 2–6, pp. 1682–1686.

    Google Scholar 

  126. Fatikow, S., Eichhorn, V., Wich, Th., Hülsen, H., Hänßler, O. & Sievers, T. 2006 ‘Development of an automatic nanorobot cell for handling of carbon nanotubes’, IARP/IEEE-RAS/EURON International Workshop on Micro/Nano Robotics.

    Google Scholar 

  127. Fatikow, S., Wich, Th., Hülsen, H., Sievers, T. & Jähnisch, M. 2007, ‘Microrobot system for automatic nanohandling inside a scanning electron microscope’, IEEEASME Transactions on Mechatronics.

    Google Scholar 

  128. Nakajima, M., Arai, F., Dong, L., Nagai, M. & Fukuda, T. 2004, ‘Hybrid nanorobotic manipulation system inside scanning electron microscope and transmission electron microscope’, IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 589–594.

    Google Scholar 

  129. Misaki, D., Kayano, S., Wakikaido, Y., Fuchiwaki, O. & Aoyama, H. 2004, ‘Precise automatic guiding and positioning of microrobots with a fine tool for microscopic operations’, IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 218–223.

    Google Scholar 

  130. Fatikow, S., Buerkle A. & Seyfried J. 1999, ‘Automatic control system of a microrobot-based microassembly station using computer vision’, SPIE’s International Symposium on Intelligent Systems & Advanced Manufacturing, Conference on Microrobotics and Microassembly, Boston, MA, USA, pp. 11–22.

    Google Scholar 

  131. Klocke Nanotechnik 2005, http://www.nanomotor.de/.

    Google Scholar 

  132. Kortschack, A. & Fatikow, S. 2004, ‘Development of a mobile nanohandling robot’, Journal of Micromechatronics, vol. 2, no. 3, pp. 249–269.

    Article  Google Scholar 

  133. Mircea, J. & Fatikow, S. 2007, ‘Microrobot-based nanoindentation of an epoxy-based electrically conductive adhesive’, IEEE NANO-Conference, Hong Kong.

    Google Scholar 

  134. Ferreira, A. & Mavroidis, C. 2006, ‘Virtual reality and haptics for nanorobotics’, IEEE Robotics & Automation Magazine, pp. 78–92.

    Google Scholar 

  135. Stolle, Ch. & Fatikow, S. 2007, ‘Control system of an automated nanohandling robot cell’, 22nd IEEE International Symposium on Intelligent Control, Singapore.

    Google Scholar 

  136. Trüper, T., Kortschack, A., Jähnisch, M., Hülsen, H. & Fatikow, S. 2004, ‘Transporting cells with mobile microrobots’, IEE Proceedings-Nanobiotechnology, vol. 151, no. 4, pp. 145–150.

    Article  Google Scholar 

  137. Hülsen, H., Trüper, T., Kortschack, A., Jähnisch, M. & Fatikow, S. 2004, ‘Control system for the automatic handling of biological cells with mobile microrobots’, American Control Conference, Boston, MA, USA, pp. 3986–3991.

    Google Scholar 

  138. Wich, Th., Sievers, T. & Fatikow, S. 2006, ‘Assembly inside a scanning electron microscope using electron beam induced deposition’, IEEE International Conference on Intelligent Robots and Systems, Beijing, China, pp. 294–299.

    Google Scholar 

  139. Sievers, T., Garnica, S., Tautz, S., Trüper, T. & Fatikow, S. 2007, ‘Microrobot station for automatic cell handling’, Journal on Robotics & Autonomous Systems.

    Google Scholar 

  140. Fatikow, S., Eichhorn, V., Tautz, S. & Hülsen, H. 2006, ‘AFM probe-based nanohandling robot station for the characterization of CNTs and biological cells’, 5th International Workshop on Microfactories, Besancon, Frankreich.

    Google Scholar 

  141. Hagemann, S., Krohs, F. & Fatikow, S. 2007, ‘Automated characterization and manipulation of biological cells by a nanohandling robot station’, International Conference Nanotech Northern Europe, Helsinki, Finland.

    Google Scholar 

  142. Fatikow, S., Eichhorn, V., Krohs, F., Mircea, J., Stolle, Ch. & Hagemann, S. 2007, ‘Development of an automated microrobot station for nanocharacterization’, SPIE’s International. Conference Microtechnologies for the New Millennium, Maspalomas, Gran Canaria.

    Google Scholar 

  143. Luttermann, T., Wich, Th., Stolle, Ch. & Fatikow S. 2007, ‘Development of an automated desktop station for EBiD-based nano-assembly’, 2nd International Conference on Micro-Manufacturing, Greenville, South Carolina, USA.

    Google Scholar 

  144. Jasper, D. & Fatikow, S. 2007, ‘CameraMan — nanohandling robot cell inside a scanning electron microscope with flexible vision feedback’, SPIE’s International Symposium on Optomechatronic Technologies, Lausanne, Switzerland.

    Google Scholar 

  145. Eichhorn, V., Carlson, K., Andersen, K.N., Fatikow, S. & Boggild, P. 2007, ‘Nanorobotic manipulation setup for pick-and-place handling and non-destructive characterization of carbon nanotubes’, 20th International Conference on Intelligent Robots and Systems, San Diego, California.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Fatikow, S. (2008). Trends in Nanohandling. In: Fatikow, S. (eds) Automated Nanohandling by Microrobots. Springer Series in Advanced Manufacturing. Springer, London. https://doi.org/10.1007/978-1-84628-978-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-978-1_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-977-4

  • Online ISBN: 978-1-84628-978-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics