Skip to main content

Single Nucleotide Polymorphisms in Health and Cardiac Disease

  • Chapter
Electrical Diseases of the Heart
  • 1679 Accesses

Abstract

The prevalence of many complex human diseases such as asthma, cardiovascular disease, and diabetes has risen greatly over the past two decades in developed countries. In addition, the genetic causes of monogenic diseases have been identified, leading to a better understanding of their pathogenesis and to the development of preventive strategies, diagnostic tools, and treatment. Considerable effort has been made to detect genetic loci contributing to quantitative phenotypes and complex arrhythmogenic diseases. Genetic association and linkage studies comprise the two dominant strategies: association studies aim to find disease-predisposing alleles [from single nucleotide polymorphisms (SNPs) or microsatellite markers] at the population level, whereas linkage studies focus on familial segregation. Predisposition to arrhythmia, e.g., acquired QT prolongation or torsade de pointes (TdP) during treatment with cardiac and noncardiac drugs, is still a major challenge for physicians. Recent advances in the knowledge of the genomic and physiological regulation of myocardial repolarization suggest that common alterations of cardiac (ion channel) genes are associated with slight electrophysiological changes and an increased susceptibility for ventricular arrhythmia. The extent to which common genetic factors play a role is under current investigation and remains to be determined. The availability of extensive catalogues of SNPs in cardiac and non- cardiac genes across the human genome is applicable for further genetic and functional studies to address the issue of genetically determined arrhythmogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001;291(5507):1304–1351.

    Article  PubMed  CAS  Google Scholar 

  2. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001;409(6822):860–921.

    Article  PubMed  CAS  Google Scholar 

  3. Botstein D, White RL, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 1980;32(3):314–331.

    PubMed  CAS  Google Scholar 

  4. Kääb S, Schulze-Bahr E. Susceptibility genes and modifiers for cardiac arrhythmias. Cardiovasc Res 2005;67(3):397–413.

    Article  PubMed  CAS  Google Scholar 

  5. Altshuler D, Pollara VJ, Cowles CR, et al. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 2000;407(6803):513–516.

    Article  PubMed  CAS  Google Scholar 

  6. Lindblad-Toh K, Winchester E, Daly MJ, et al. Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse. Nat Genet 2000;24(4):381–386.

    Article  PubMed  CAS  Google Scholar 

  7. Mullikin JC, Hunt SE, Cole CG, et al. An SNP map of human chromosome 22. Nature 2000;407(6803):516–520.

    Article  PubMed  CAS  Google Scholar 

  8. Sachidanandam R, Weissman D, Schmidt SC, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001;409(6822):928–933.

    Article  PubMed  CAS  Google Scholar 

  9. Au WW, Oh HY, Grady J, et al. Usefulness of genetic susceptibility and biomarkers for evaluation of environmental health risk. Environ Mol Mutagen 2001;37(3):215–225.

    Article  PubMed  CAS  Google Scholar 

  10. Editorial. Freely associating. Nat Genet 1999;22:1–2.

    Google Scholar 

  11. Cooper DN, Nussbaum RL, Krawczak M. Proposed guidelines for papers describing DNA polymorphism-disease associations. Hum Genet 2002;110(3):207–208.

    Article  PubMed  CAS  Google Scholar 

  12. Pfeufer A, Jalilzadeh S, Perz S, et al. Common variants in myocardial ion channel genes modify the QT interval in the general population: Results from the KORA study. Circ Res 2005;96(6):693–701.

    Article  PubMed  CAS  Google Scholar 

  13. Arking DE, Pfeufer A, Post W, et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet 2006;38(6):644–651.

    Article  PubMed  CAS  Google Scholar 

  14. Busjahn A, Knoblauch H, Faulhaber HD, et al. QT interval is linked to 2 long-QT syndrome loci in normal subjects. Circulation 1999;99(24):3161–3164.

    PubMed  CAS  Google Scholar 

  15. Newton-Cheh C, Larson MG, Corey DC, et al. QT interval is a heritable quantitative trait with evidence of linkage to chromosome 3 in a genomewide linkage analysis: The Framingham Heart Study. Heart Rhythm 2005;2(3):277–284.

    Article  PubMed  Google Scholar 

  16. Kaufman ES, Priori SG, Napolitano C, et al. Electrocardiographic prediction of abnormal genotype in congenital long QT syndrome: Experience in 101 related family members. J Cardiovasc Electrophysiol 2001;12(4):455–461.

    Article  PubMed  CAS  Google Scholar 

  17. Zareba W, Moss AJ, Sheu G, et al. Location of mutation in the KCNQ1 and phenotypic presentation of long QT syndrome. J Cardiovasc Electrophysiol 2003;14(11):1149–1153.

    Article  PubMed  Google Scholar 

  18. Dekker LR, Bezzina CR, Henriques JP, et al. Familial sudden death is an important risk factor for primary ventricular fibrillation: A case-control study in acute myocardial infarction patients. Circulation 2006;1 14(11):1140–1145.

    Article  Google Scholar 

  19. Spooner PM, Albert C, Benjamin EJ, et al. Sudden cardiac death, genes, and arrhythmogenesis: Consideration of new population and mechanistic approaches from a national heart, lung, and blood institute workshop, partI. Circulation 2001;103(19):2361–2364.

    PubMed  CAS  Google Scholar 

  20. Jouven X, Desnos M, Guerot C, et al. Predicting sudden death in the population: The Paris Prospective Study I. Circulation 1999;99(15):1978–1983.

    PubMed  CAS  Google Scholar 

  21. de Bruyne MC, Hoes AW, Kors JA, et al. Prolonged QT interval predicts cardiac and all-cause mortality in the elderly. The Rotterdam Study. Eur Heart J 1999;20(4):278–284.

    Article  PubMed  Google Scholar 

  22. Algra A, Tijssen JG, Roelandt JR, et al. QTc prolongation measured by standard 12-lead electrocardiography is an independent risk factor for sudden death due to cardiac arrest. Circulation 1991;83(6):1888–1894.

    PubMed  CAS  Google Scholar 

  23. Straus SM, Kors JA, De Bruin ML, et al. Prolonged QTc interval and risk of sudden cardiac death in a population of older adults. J Am Coll Cardiol 2006;47(2):362–367.

    Article  PubMed  Google Scholar 

  24. Newton-Cheh C, Larson MG, Corey DC, et al. QT interval is a heritable quantitative trait with evidence of linkage to chromosome 3 in a genomewide linkage analysis: The Framingham Heart Study. Heart Rhythm 2005;2(3):277–284.

    Article  PubMed  Google Scholar 

  25. Schulze-Bahr E, Haverkamp W, Hordt M, et al. Do mutations in cardiac ion channel genes predispose to drug-induced (acquired) long-QT syndrome? Circulation 1997;96(8):I–210 (Suppl.).

    Google Scholar 

  26. Roden DM, Viswanathan PC. Genetics of acquired long QT syndrome. J Clin Invest 2005;115(8):2025–2032.

    Article  PubMed  CAS  Google Scholar 

  27. Roden DM. Long QT syndrome: Reduced repolarization reserve and the genetic link. J Intern Med 2006;259(1):59–69.

    Article  PubMed  CAS  Google Scholar 

  28. Yang P, Kanki H, Drolet B, et al. Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 2002;105(16):1943–1948.

    Article  PubMed  CAS  Google Scholar 

  29. Paulussen ADC, Gilissen RAHJ, Armstrong M, et al. Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. J Mol Med 2004;82(3):182–188.

    Article  PubMed  CAS  Google Scholar 

  30. Groenewegen WA, Firouzi M, Bezzina CR, et al. A cardiac sodium channel mutation cosegregates with a rare connexin40 genotype in familial atrial standstill. Circ Res 2003;92(1): 14–22.

    Article  PubMed  CAS  Google Scholar 

  31. Makita N, Sasaki K, Groenewegen WA, et al. Congenital atrial standstill associated with coinheritance of a novel SCN5A mutation and connexin 40 polymorphisms. Heart Rhythm 2005;2(10):1128–1134.

    Article  PubMed  Google Scholar 

  32. Bezzina CR, Shimizu W, Yang P, et al. Common sodium channel promoter haplotype in asian subjects underlies variability in cardiac conduction. Circulation 2006;1 13(3):338–344.

    Article  CAS  Google Scholar 

  33. Ackerman MJ, Tester DJ, Jones GS, et al. Ethnic differences in cardiac potassium channel variants: Implications for genetic susceptibility to sudden cardiac death and genetic testing for congenital long QT syndrome. Mayo Clinic Proc 2003;78(12):1479–1487.

    Article  CAS  Google Scholar 

  34. Bezzina CR, Verkerk AO, Busjahn A, et al. A common polymorphism in KCNH2 (HERG) hastens cardiac repolarization. Cardiovasc Res 2003;59(1):27–36.

    Article  PubMed  CAS  Google Scholar 

  35. Gouas L, Nicaud V, Berthet M, et al. Association of KCNQ1, KCNE1, KCNH2 and SCN5A polymorphisms with QTc interval length in a healthy population. Eur J Hum Genet 2005;13(11):1213–1222.

    Article  PubMed  CAS  Google Scholar 

  36. Paavonen KJ, Chapman H, Laitinen PJ, et al. Functional characterization of the common amino acid 897 polymorphism of the cardiac potassium channel KCNH2 (HERG). Cardiovasc Res 2003;59(3):603–611.

    Article  PubMed  CAS  Google Scholar 

  37. Pietila E, Fodstad H, Niskasaari E, et al. Association between HERG K897T polymorphism and QT interval in middle-aged Finnish women. J Am Coll Cardiol 2002;40(3):511–514.

    Article  PubMed  CAS  Google Scholar 

  38. Splawski I, Timothy KW, Tateyama M, et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 2002;297(5585):1333–1336.

    Article  PubMed  CAS  Google Scholar 

  39. Burke A, Creighton W, Mont E, Li L, Hogan S, Kutys R, et al. Role of SCN5A Y1 102 polymorphism in sudden cardiac death in blacks. Circulation 2005;112(6):798–802.

    Article  PubMed  CAS  Google Scholar 

  40. Plant LD, Bowers PN, Liu Q, Morgan T, Zhang T, State MW, et al. A common cardiac sodium channel variant associated with sudden infant death in African Americans, SCN5A S1103Y. J Clin Invest 2006;116(2):430–435.

    Article  PubMed  CAS  Google Scholar 

  41. Etzrodt D, Schulze-Bahr E. Letter regarding article by Burke et al., “role of SCN5A Y1102 polymorphism in sudden cardiac death in blacks.” Circulation 2006;113(15):e709.

    Article  PubMed  Google Scholar 

  42. Jeron A, Hengstenberg C, Holmer S, et al. KCNJ11 polymorphisms and sudden cardiac death in patients with acute myocardial infarction. J Mol Cell Cardiol 2004;36(2):287–293.

    Article  PubMed  CAS  Google Scholar 

  43. Cui N, Li L, Wang X, et al. Elimination of allosteric modulation of myocardial KATP channels by ATP and protons in two Kir6.2 polymorphisms found in sudden cardiac death. Physiol Genomics 2006;25(1):105–115.

    Article  PubMed  CAS  Google Scholar 

  44. Roden DM. Taking the “idio” out of “idiosyncratic”: Predicting torsades de pointes. Pacing Clin Electrophysiol 1998;21(5): 1029–1034.

    Article  PubMed  CAS  Google Scholar 

  45. Abbott GW, Sesti F, Splawski I, et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 1999;97(2):175–187.

    Article  PubMed  CAS  Google Scholar 

  46. Sesti F, Abbott GW, Wei J, et al. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc Natl Acad Sci USA 2000;97(19):10613–10618.

    Article  PubMed  CAS  Google Scholar 

  47. Hayashi K, Shimizu M, Ino H, et al. Probucol aggravates long QT syndrome associated with a novel missense mutation M124T in the N-terminus of HERG. Clin Sci (Lond) 2004;107(2):175–182.

    CAS  Google Scholar 

  48. Splawski I, Shen J, Timothy KW, et al. Genomic structure of three long QT syndrome genes: KVLQT1, HERG, and KCNE1. Genomics 1998;51(1):86–97.

    Article  PubMed  CAS  Google Scholar 

  49. Piquette RK. Torsade de pointes induced by cisapride /clarithromycin interaction. Ann Pharmacother 1999;33(1):22–26.

    Article  PubMed  CAS  Google Scholar 

  50. Bellocq C, Wilders R, Schott JJ, et al. A common antitussive drug, clobutinol, precipitates the long QT syndrome 2. Mol Pharmacol 2004;66(5):1093–1102.

    Article  PubMed  CAS  Google Scholar 

  51. Chevalier P, Rodriguez C, Bontemps L, et al. Noninvasive testing of acquired long QT syndrome: Evidence for multiple arrhythmogenic substrates. Cardiovasc Res 2001;50(2):386–398.

    Article  PubMed  CAS  Google Scholar 

  52. Napolitano C, Schwartz PJ, Brown AM, et al. Evidence for a cardiac ion channel mutation underlying drug-induced QT prolongation and lifethreatening arrhythmias. J Cardiovasc Electrophysiol 2000;11(6):691–696.

    Article  PubMed  CAS  Google Scholar 

  53. Berthet M, Denjoy I, Donger C, et al. C-terminal HERG mutations: The role of hypokalemia and a KCNQ1-associated mutation in cardiac event occurrence. Circulation 1999;99(11):1464–1470.

    PubMed  CAS  Google Scholar 

  54. Donger C, Denjoy I, Berthet M, et al. KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation 1997;96(9):2778–2781.

    PubMed  CAS  Google Scholar 

  55. Makita N, Horie M, Nakamura T, et al. Druginduced long-QT syndrome associated with a subclinical SCN5A mutation. Circulation 2002;106(10):1269–1274.

    Article  PubMed  Google Scholar 

  56. Liu J, Laurita KR. The mechanism of pause-induced torsade de pointes in long QT syndrome. J Cardiovasc Electrophysiol 2005;16(9):981–987.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Schulze-Bahr, E. (2008). Single Nucleotide Polymorphisms in Health and Cardiac Disease. In: Gussak, I., Antzelevitch, C., Wilde, A.A.M., Friedman, P.A., Ackerman, M.J., Shen, WK. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-84628-854-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-854-8_18

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-853-1

  • Online ISBN: 978-1-84628-854-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics